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Abstract Could a robot feel authentic empathy? What

exactly is empathy, and why do most humans have it?

We present a model which suggests that empathy is an

emergent behavior with four main elements: a mirror

neuron system, somatosensory cortices, an insula, and

infant-directed “baby talk” or motherese. To test our

hypothesis, we implemented a robot called MEI (multi-

modal emotional intelligence) with these functions, and

allowed it to interact with human caregivers using com-

fort and approval motherese, the first kinds of vocaliza-

tions heard by infants at 3 and 6 months of age. The

robot synchronized in real-time to the humans through

voice and movement dynamics, while training statistical

models associated with its low level gut feeling (“flour-

ishing” or “distress”, based on battery or temperature).

Experiments show that the post-interaction robot asso-

ciates novel happy voices with physical flourishing 90%

of the time, sad voices with distress 84% of the time.

Our results also show that a robot trained with infant-

directed “attention bids” can recognize adult fear voices.

Importantly, this is the first emotion system to rec-

ognize adult emotional voices after training only with

motherese, suggesting that this specific parental behav-

ior may help build emotional intelligence.
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1 Introduction

“When dealing with people, remember you are

not dealing with creatures of logic, but creatures

of emotion.” – Dale Carnegie

The year is 2030. A healthcare robot oversees an

elderly patient named Linda at the local hospital. It

is evening, and the robot is set to close the room at

9pm. Soaked by the rain, the patients daughter, Mary,

knocks on the hospital room door. Mary has driven 50

kilometers from the airport, but a thunderstorm has de-

layed her arrival. She yearns to hold her mothers hand,

because it has been 3 years since their last meeting.

Linda’s eyes light up as she sees her daughter through

the hospital room window. But it is now 9:01pm. The

healthcare robot locks the door with a loud thud. Crest-

fallen, the mom and daughter look pleadingly at the

robot, but the rules are rules.

Robots do not share our capacity for empathy. It

is easy to see why, in a 2012 survey, 60% of EU citi-

zens stated that robots should be banned in the care

of children, the elderly, or the disabled. Large majori-

ties would also agree to ban robots from “human” areas

such as education (34%), healthcare (27%) and leisure

(20%). Yet, a new breed of service robots are advancing

to our doorstep quickly, with the potential to change

the lives of children and the elderly, able-bodied and

disabled, students and more. For robots to be accepted

in our daily lives as helpers, we must release robots

from their pure, programmed logic and make them more

emotional, more empathetic, to interact with humans

on their own terms.

Empathy is the ability to experience the emotion of

another person through implicit or explicit understand-

ing of their position. Recent research from both evolu-

tion and neuroscience point to two different systems of
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empathy in humans, one based on emotional contagion,

i.e., “I feel what you feel”, and the other through ad-

vanced cognitive perspective-taking, i.e. ”I understand

what you feel.” [21] [65]. According to Baron-Cohen et

al., empathy not only allows us to experience an emo-

tion triggered by someone else’s emotion, but eventu-

ally also predict their behavior and understand their

intentions [6]. But what are emotions?

Emotions have been defined as synchronized reac-

tions involving multiple components, including subjec-

tive feeling, expression, physiological arousal, action ten-

dency, and regulation [39]. For instance, in the above

example, Mary might have reacted to the robot’s re-

jection with a feeling of distress (subjective feeling), a

downturned mouth and dejected voice pattern (expres-

sion), a heightened heart rate (physiological arousal),

a plan to leave the hospital (action tendency), and an

attempt not to cry in a public place (regulation). In

this paper, we look at the first two components of emo-

tion which emerge fast and involuntarily: internal feel-

ing and external expression. Feelings are the private,

mental experience of emotion, which we will further de-

fine in Section 3.1.3. Moods are different from emotions,

in that they are lower in intensity, last longer than emo-

tions (i.e. several hours to days) and are not necessarily

in response to any clear event or object. Another useful

term is affect, which has been defined as “an embodied

reaction of pleasure or displeasure that references the

goodness or badness of something and of arousal that

references its urgency or importance” [15].

In the following sections, we describe the design and

implementation of a robot with basic empathy. We first

describe the benefits of robot empathy and discuss the

challenges of its acceptance in Section 2. In Section 2

we will also give a brief overview of previous research

in modeling robot emotions, and describe how our ap-

proach extends this work. We will then use observations

in neuroscience in Section 3 and developmental science

to build and support a new model of empathy. Finally,

we will describe the implementation of the design on a

Aldebaran NAO1 robot, and present some experimen-

tal results with a robot that develops empathy in an

human-robot caregiver loop in Section 4.1.

2 Background and Challenges

2.1 The Role of Empathy in Human-Robot Interaction

In the field of human-robot interaction, researchers have

demonstrated the benefits of empathy in robot behav-

ior design. Typically, a robot is trained to recognize

1 http://www.aldebaran-robotics.com

the current emotion of a user, and then it mimics that

emotion by changing its facial features, for example. Us-

ing the expressive robot EDDIE, Gonsior et al. showed

that robots that mirror emotional states elicit more co-

operative behavior from users [31]. Cramer et al. also

showed that the iCat robot, when expressing accurate

empathetic behaviors, was perceived as more depend-

able and trustworthy [17]. In terms of automatic sys-

tems, [46] [56] used a combination of facial expression

recognition and rules to infer the human’s emotional

state, and showed that the robot was perceived more

as a friend.

Empathy also works in the other direction, from hu-

man to robot. Riek et al. showed that the more human-

like a robot is, the more humans empathize with them,

which is interesting from a design point of view. They

suggest a link with preferential treatment and societal

in-group bias based on physical markers of similarity

(e.g. skin color) [60]. Kwak and Kim [45] suggest that

empathy – both in the human and in the robot – is

important because it results in mutual emotional com-

munication.

2.2 The Challenge of Authenticity

Despite the advantages that empathetic robots propose,

one major challenge towards the acceptance of these

empathetic robots is a perceived lack of authenticity.

If a robot displays sadness in response to your grief,

does it really feel sad? Does it matter? Among humans,

expressing emotions that one does not really feel can

be construed as fake, insincere, or even worse, manip-

ulative. This has led to strong concerns, for instance

by Turkle, that elderly care or child companion robots

would be deceiving their owners by providing inauthen-

tic affective relations, because robots do not have real

“feelings” [70].

2.3 Towards Authentic Emotional Robotics

What exactly does it mean to be “authentic”? Authen-

tic is defined as 1) “conforms to an original so as to

reproduce essential features (e.g., an authentic repro-

duction of a 16th century castle)” and 2) “made or

done in the same way as an original (e.g., authentic

Mexican cuisine)”2. In this paper, we will suppose that

we are referring to robot authenticity relative to the

original—the human.

In order to understand how the challenge of em-

pathetic authenticity could be addressed, let us review

2 www.merriam-webster.com/dictionary/authentic
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some previous approaches towards building robot emo-

tion systems. A first approach is to equip a robot with a

fixed emotion architecture (essential features) inspired

by theories and models of biological systems. A second

approach is to create a robot software architecture that,

in addition to mirroring human (i.e. brain) architecture,

continually learns from its environment as a child does

(made or done in the same way as the original). This

paper situates itself in the latter, in the relatively new

field of developmental robotics.

2.3.1 Modeling Components from Biological Systems

Many robot emotion systems exist (e.g. [71] [74]), but

perhaps the most well-known emotional robot system

to date is MIT’s expressive robot Kismet from the late

1990’s. Breazeal et al. [11] modeled Kismet’s motiva-

tional system as an interconnected network of mod-

ules mirroring those found in biology, including mod-

ules such as drives and situational appraisals. For ex-

ample, when the robot achieved one of its goals, the

internal elicitors pulled the robot’s internal emotional

state closer to happiness, and the robot expressed it-

self accordingly. Kismet’s emotional architecture was

based on a system of needs and drives and models

of emotion from psychologists (e.g. Mehrabian’s PAD

emotion representation [50]). Furthermore, while tra-

ditional emotion models used purely animal theories

(e.g. fear/avoidance functions in a rat), Kismet aimed

to handle human-specific behaviors such as raising eye-

brows and smiling. Kismet could both perceive human

emotions and express them, with underlying software

modules that mirrored human mental architecture, and

this integration was a significant step towards the goal

of building robots with human-like emotions.

2.3.2 Developmental Robotics

Kismet was also one of the first projects which placed

the human and robot in caregiver and infant roles. For

instance, the robot responded to infant-directed speech,

or baby talk, which will be discussed later in this pa-

per. These unique interactions with Kismet pioneered

the beginning of a new field of robotics and cognitive

modeling based on infant psychology, called develop-

mental robotics.

The essential goal of developmental robotics (also

known as epigenetic robotics) is to study developmen-

tal mechanisms and architectures, for a robot to learn as

a child does. It involves formalizing, validating and ex-

tending models from neuroscience, developmental psy-

chology, and evolutionary biology, specifically by at-

tempting to implement the models in robots. At the

same time, these formalized models are expected to

feedback into existing theories, or produce novel the-

ories about human development. For instance, roboti-

cists such as Nagai and Rohlfing created models to de-

scribe the use of motion as an early mechanism for

teaching [53], and Ishihara has studied language de-

velopment using this paradigm [37]. A comprehensive

review of the field is available in [3].

One notable early work in emotional developmental

robotics is done by Kozima et al., who explore the idea

of robot empathy built like that of children’s [44]. In

that work’s final section, Kozima provides an outlook

for emotional robots, including the development of a

robot “mirror system”, a concept we will explore later.

These interesting ideas were not yet implemented in a

robot at the time. As a general rule, it is thought to be

useful to implement models in robots when elaborating

a model, because the implementation step itself may

expose holes in understanding within the model.

Despite the engineering nature of robot implemen-

tation, we should make it clear the primary goal of

developmental roboticists is the creation of a better,

more formal models itself. As Scassellati, a pioneer of

the developmental robotics field writes, “Developmen-

tal robotics is not about creating a system with peak

performance at an engineering task. At first glance, it

seems that those who employ computational models to

describe developmental phenomena belong in the same

camp as those who want to build better computational

systems using inspiration from developmental biology.

In both cases, the goal is the creation of a computa-

tional framework, simulation, or mathematical formu-

lation. [...] However, the aims of these two groups could

not be more dissimilar: one group uses biological themes

to develop better engineering; the other uses compu-

tational techniques to formulate better descriptions of

biological development.” [63].

As such, we take the latter, developmental robotics

approach towards empathy: by creating a better, for-

malized model of empathy, the closer we may approach

to human-like processes, and perhaps, authenticity.

2.4 Our Approach

Since the time of Kismet, significant progress has been

made in functional magnetic resonance imaging (fMRI)

technology towards understanding the functional com-

ponents in the brain. Therefore, we extend previous

emotion models in the following ways: 1) We use the lat-

est neuroscientific evidence to build our theories on em-

pathy, 2) We take a developmental robotics approach,

assuming that empathy, just like other skills such as

sensory-motor associations, could be developed through
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early caregiver interaction, and 3) We address the con-

cept of feeling, which has not been addressed by any

other robot emotion system to-date.

In the next section, we will present our new model

along with evidence supporting it. Firstly, we will iden-

tify the relevant neural architectures of empathy, which

should help us reproduce essential features in the brain

for empathy. In particular, we expect that neuroscien-

tific evidence should help us address visible motor be-

havior as well as the essential but thorny question of

inner feelings. Secondly, we will model the development

process. How do human infants develop into empathetic

beings? We did not know the precise answer to this, so

a major contribution of this paper is to propose a con-

crete developmental explanation.

3 Empathy Systems in Humans

Let’s now examine three major concepts involved hu-

man empathy systems:

– Affective empathy through emotional contagion,

– Physical, gut feelings, a way to ground emotional

expressions,

– Infant development, to construct associations be-

tween expression and feeling.

Recent neurological studies have provided evidence

that humans have two independent systems for empa-

thy in the brain: affective empathy and cognitive empa-

thy [65]. Affective empathy is thought to rely on a basic

emotional contagion system, and cognitive empathy on

a cognitive, perspective-taking system. For example, in

the introductory scenario, there are two ways that a hu-

man nurse may have been affected by Linda and Mary’s

predicament. Mary could have explained her situation

about the rain, the accident, and the long-awaited re-

union. Perhaps the nurse would have imagined herself in

their situation, and opened the door. This is cognitive

empathy. But the way Mary asked is also important.

If Mary and Linda had plead, with sorrowful faces and

voices, an empathetic nurse would also be hard-pressed

to keep the door locked. This second type is called af-

fective empathy and is based on a mechanism that is

“automatic, unintentional, uncontrollable, and inacces-

sible to awareness,” called emotional contagion [33].

Robots may benefit from an affective empathy sys-

tem. Simon Baron-Cohen has argued that narcissistic,

borderline and psychopathic personalities may have in-

tact cognitive empathy (e.g., a psychopath may recog-

nize that their victim is in pain) but lack affective empa-

thy (e.g., not actually feel pain themselves while tortur-

ing a victim) [7]. In a dictator game experiment, altru-

istic sharing behavior was found to be related to affec-

tive empathy, whereas cognitive empathy was not [24].

Since affective empathy appears to have certain desir-

able characteristics which cognitive empathy does not,

we will focus on the former in this paper.

One notable element of affective empathy its under-

lying mechanism called emotional contagion, defined as

“the tendency to automatically mimic and synchronize

facial expressions, vocalizations, postures, and move-

ments with those of another person’s and, consequently,

to converge emotionally” [33]. This convergence may

even surpass emotions. Preston and De Waal have con-

trasted emotional contagion with other kinds of empa-

thy: in cognitive empathy and sympathy, the separa-

tion between the self and other is retained, but in emo-

tional contagion, there is no self-other distinction [58].

In other words, during emotional contagion, the “self-

other” distinction becomes blurred. How does emotional

contagion work?

3.1 Emotional contagion

Most studies focus on emotional contagion through fa-

cial expressions [33], but it has been found in other

modalities such as voice. Neumann and Strack have

found evidence of emotional contagion from speech [54].

In a covert text-comprehension task, participants lis-

tened to a text read in a slightly happy, neutral, or

slightly sad tone of voice. They found that those who

listened to the happy voice rated their mood signifi-

cantly better than those who listened to the sad voice:

“Even though participants did not have the goal

of sharing the feelings of the target person, ex-

posure to the emotional expression promoted a

congruent mood in the listener.” [54]

Emotional contagion is also used by recording artists

and film score directors to induce emotion through mu-

sic [39]. In a 2008 study, Juslin et al. provided partic-

ipants with handheld devices to record their musical

emotional experiences at random points throughout a

2-week period [38]. In 64% of the episodes when the

participants were listening to music, they reported that

the music influenced their feelings, and over 573 mu-

sical episodes, emotional contagion was reported most

often as the reason (32%).

To summarize, emotional contagion has two parts:

– Automatic mimicry and synchronization of facial

expressions, vocalizations, postures and movements

with those of another person’s

– Emotional convergence

To design a solution based on these requirements,

we take inspiration from neurological studies. A 2009
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review provides a broad summary of what is known

about empathy and the brain [35]:

“A large-scale network for empathy is composed

of the mirror neuron system, the insula, and the

limbic system.”

3.1.1 Mirror neuron system

The mirror neuron system has been suggested to be a

major mechanism for empathy [36,55]. Mirror neurons

(also known as the mirror mechanism) are those in the

motor areas of the human brain that fire both during

action execution and also action observation [35]. The

first study in 1992 showed that the neurons in the pre-

motor cortex of a macaque monkey grasping food were

also found to be active when observing a human grasp-

ing food [22]. More recent studies show more direct links

between mirror neurons and emotion. A functional MRI

experiment found a mirror neuron network that was ac-

tive both when observing a facial emotion and imitat-

ing the emotion [14]. Further, [55] has found evidence

that affective empathy engages the mirror neuron sys-

tem more than cognitive empathy.

Mirror neurons have been proposed as a critical step

towards the simulation of the mental states of others,

by mapping sensory input to internal representations.

For example, mirror neurons provide precise visual to

motor mapping in the studies described earlier, where

simple visual observation of an action incited premotor

activity in the brain [61,36]. Similar results have also

been found for auditory input: neurons in the monkey

premotor cortex discharge both when it performs an

action and when it hears the related sound [43]. In a

neurological music study, simply listening to music ac-

tivated brain areas related to premotor representations

for vocal sound production (though no singing was ob-

served in participants) [42]. This internal representation

via the mirror neuron system is similar to what Dama-

sio called an “as-if-body-loop” mechanism for emotion:

“The brain momentarily creates a set of body

maps that does not correspond exactly to the

current reality of the body.” [19]

In summary, mirror neurons provide a “sensory-motor

gateway for forming an internal representation of an

observed person’s state” [23]. Therefore, our robot im-

plementation should have an internal representation of

the other’s body state, not a simple one-to-one imitative

mapping. This insight can help us respond to our emo-

tional contagion requirement of “automatic mimicry

and synchronization of facial expressions, vocalizations,

etc.”, and its implementation is further elaborated in

Section 4.1.

In addition to motor mimicry, there should also be

an “emotional convergence” for emotional contagion:

that is, a sharing of an emotional feeling:

“We understand what others feel by a mecha-

nism of action representation that allows empa-

thy and modulates our emotional content. The

insula plays a fundamental role in this mecha-

nism.” [14]

3.1.2 The insula

A part of the brain called the insula has been sug-

gested to be at the crux of the association between

action representation and emotion [14]. All mammals

have an insula that reads their body condition, by way

of visceral and interoceptive sensors (sensing heat, cold,

pain, taste, muscle ache) sending information to the in-

sula [12]. In humans, great apes, whales, and elephants,

it contains a special type of cell called the Von Economo

Neuron, which are large and are hypothesized to help

channel neural signals from deep within the cortex to

relatively far parts of the brain [16].

The insula has been associated with many behav-

iors: drug cravings, feeling pain, maternal love, em-

pathizing with others, seeing disgust on a face, and lis-

tening to music [16,52]. It thought to be where bad

taste or smell are transformed into disgust [2,13], or

a sensual touch into pleasure [51]. It is active when a

mother hears a crying baby [40], or when a person looks

at a happy face [57]. It is active both when empathizing
for others’ pain [67], and when directly feeling pain [8].

How exactly does the insula work? Although its ex-

act mechanism is still not clear, Damasio and others

have proposed that the human insula plays a role in

mapping visceral states that are associated with emo-

tional experience, giving rise to conscious feelings [19,

16,67]. Therefore, an integral part of an empathetic

robot system appears to be an artificial insula: a mod-

ule that associates an emotional experience to a robot’s

own physical, bodily state.

A final component related to empathy is the feeling

itself. Insight can come from brain lesion studies such as

[1] by Ralph Adolphs. In this study, patients looked at

photographs of people expressing an emotion and were

asked to guess the person’s state of mind by “placing

himself in the person’s shoes”. The most interesting re-

sult was those with impaired performance in this task:

those with damage in the insula and somatosensory cor-

tices.
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Fig. 1 Proposed mechanisms necessary for emotional conta-
gion.

3.1.3 Physical, gut feelings

In the brain, the group of somatosensory cortices (from

the Greek root soma, meaning body) are responsible

for sensing the body’s internal state including viscera

(e.g. internal organs such as heart, stomach, lungs) and

joint position, as well as the external senses of touch,

temperature and pain. Damage to these areas can have

high level, emotion-related repercussions: brain patients

that have damage to the cortices in charge of process-

ing signals from the body do not show normal signs of

despair or panic ([18], pg. 63).

The somatosensory cortices are important, because

they form the basis of one of the most well-known the-

ories on feelings, called the Somatic Marker Hypothe-

sis [18]:

“Feelings are [...] first and foremost about the

body, that they offer us the cognition of our

visceral and musculoskeletal state... By [...] jux-

taposition, body images give to other images a

quality of goodness or badness, of pleasure or

pain.”

In short, Damasio’s Somatic Marker Hypothesis sug-

gests that feelings are an association of stimuli to vis-

ceral (and musculoskeletal) pleasure or pain. He also

suggests that “the critical, formative set of stimuli to

somatic pairings is, no doubt, acquired in childhood and

adolescents.”([18] p.179)

3.2 The triad: mirror system, association, and gut

feeling

Based on these findings in neuroscience, we offer an ar-

chitecture for robot empathy in Fig. 1, and a summary

Fig. 2 Proposed essential features for an emotional conta-
gion system, with related locations in the brain.

of the features in Fig. 2. A robot with empathy should

model at least these three areas of the brain: a) mirror

neurons in the premotor cortex, b) the insula c) and

the somatosensory cortex. These correspond to three

functional modules in a robot system:

– A mirror system: represents the action of another

human and can explain eventual motor imitation

(Premotor cortex)

– An associative module: associates an action rep-

resentation with a physical feeling of pleasure or

pain (Insula)

– A gut feeling module: a module for visceral and

musculoskeletal pleasure or pain, e.g. battery level

or motor heat (Somatosensory cortex)

Emotional contagion would thus work as follows.

The robot would first observe another person perform-

ing an emotive action (such as a sad voice or move-

ment), and create an action representation in the mind.

This “as-if” body representation would trigger two things:

1) a visible motor mirroring response, and 2) a learned

association between the action and a physical, gut feel-

ing of “goodness” or “badness” (for example, sufficient

or insufficient battery level in a robot). It is through this

associative mapping that seeing another person’s pain

would cause an automatic, visceral pain in oneself, for

instance. These two reactions correspond to our require-

ments for emotional contagion: 1) automatic mimicry

and synchronization of facial expressions, vocalizations,

postures and movements with those of another person’s,

and 2) emotional convergence.

We should also note a glaring omission in our sur-

vey: a review of emotion literature on the brain should

include mentions of other parts of the limbic system –

especially the amygdala. We consider the integration of

the amygdala’s functions as future work for two rea-

sons. First, while the amygdala’s role in autonomic fear

responses related to survival are clear [20], the insula

predominates in studies related to empathy for pain, for

example [34]. Further, computational emotion models

focusing on the fear response have been well established,

for instance by Fellous and LeDoux [26]. While not di-

minishing the amygdala’s role in emotions, we strive

here to provide a complimentary perspective that can
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extend to empathetic emotions and be implemented in

an embodied robot.

3.3 Developing empathy in childhood

A final puzzle piece for our system is the association

that happens in the insula. How does an action repre-

sentation trigger the appropriate visceral response? For

example, how would a robot encountering a happy per-

son retrieve a pleasant, and not painful feeling? Dama-

sio suggested that “the critical, formative set of stimuli

to somatic pairings is, no doubt, acquired in childhood

and adolescents.”([18] p.179). Indeed, dramatic devel-

opment of emotional intelligence occurs even before in-

fants reach the age of 1 year old:

“Although the development of emotion percep-

tion extends beyond infancy–perhaps through-

out the lifespan–[...] dramatic changes in emo-

tion perception competencies [...] are observed

over this period of development [during the first

year of life]. Furthermore, it may be that in-

fants reared in situations with impoverished af-

fective expression information, such as those, for

example, from caregivers with clinical depres-

sion, or in contexts where actions and expres-

sions are discrepant, may be particularly influ-

enced in their comprehension of expressions.” [72]

Our idea for developing this association lies in an

empathetic mirroring that occurs between caregivers

and their infants. In developmental psychology, [72] and

[32] have suggested a kind of associative learning be-

tween the affective voice and face during infancy. That
is, the infant receives multiple modes of emotional in-

put (such as a smile and a happy voice) simultaneously,

causing an association between these visual and audi-

tory streams. Further, a parent may produce emotional

mirroring, such as facial and vocal signals of sadness

upon seeing their child cry. In developmental robotics,

this “intuitive parenting” paradigm has been proposed

for associating a viewed emotional face with a robot’s

own emotional face [73,10]. Although these approaches

“ground” the perceived facial expressions with a robot’s

own facial expression, no developmental robot research

goes as far as to explain how a feeling may be asso-

ciated. For instance, Breazeal specifically states that

Kismet does not address the concept of feelings [11].

We propose to develop a robot’s empathy based

on an emotional interaction called motherese. Recent

research has suggested this universal mechanism, also

called infant-directed (ID) speech, is at the crossroads

for developing emotions, cognition and language in hu-

mans [62]:

“It has been shown that infants are attracted by

and attend to motherese, which is characterized

by more exaggerated intonation and higher pick

than adult-to-adult speech. Concurrent with the

exaggerated speech of motherese, there are prob-

ably exaggerated facial displays, allowing infants

to explore the particular aspects of the face (e.g.,

exaggerated mouth and brow movement). [...]

Child-centered displays may serve as opportu-

nities for learning about affective events.” [68]

For example, expressions of approval such as ‘Good!’

or ‘Clever girl!’ are typically spoken using exaggerated

rise-fall pitch contours [and] expressions of prohibition

or warning such as ‘No!’ or ‘Dont touch that!’ are spo-

ken with low pitch and high intensity [27]. Most in-

terestingly, motherese appears to have correlates with

emotional speech among adults:

“Acoustic analyses showed few differences be-

tween the infant-directed and adult-directed [emo-

tional] samples, but robust differences across the

emotions. [69]”

To summarize, a motherese-like, empathetic inter-

action between a caregiver and a robot can provide in-

put that is both a) emotional and b) consistent with the

robot’s own internal state. For example, when an infant

cries due to hunger or pain, a mother may soothe her

with an empathetic voice; when an infant is in a flour-

ishing state, the mother provides positive vocal sounds

and smiles. This empathetic interaction is how we pro-

pose to develop a robot’s association between an action

(such as a voice or movement) and a visceral, gut feel-

ing.

4 A robot that develops empathy through

interaction

In this section, we describe a robot implementation of

the emotional contagion architecture presented in Sec-

tion 3, along with some experimental results.

4.1 Design of an empathetic human-robot feedback

loop

We have covered some of the emotional characteristics

of motherese (ID speech) itself, but what are the char-

acteristics of a motherese-like interaction? According

to Gleason [30], it is not a one-way communication –

it requires two active participants: when a caregiver

speaks to an infant, the infant’s reactions shape the

interaction. In fact, Fernald has shown that mothers
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Fig. 3 The robot synchronizes to the caregiver by extract-
ing SIRE parameters from the human’s voice and reproducing
them in speech and gesture. The output is a combination of
observed HumanSIRE and InternalSIRE (a SIRE it has
learned to associate with its current internal state), damp-
ened through time.

cannot reliably produce motherese it in front of a micro-

phone [29]. Turn-taking is also observed early vocaliza-

tions between a mother and infant [59], which has been

described as “mutual entrainment between mothers an

infants during early social interactions” [9]. According

to some studies, this may even involve correlations of

melody types [62]. Inspired by these findings from in-

fant psychology, we design a robot system that allows

a back-and-forth interaction, where the robot takes the

place of the infant.

In the present implementation, we will focus on em-

pathetic vocal and motor movements. This is because

we shall use a NAO robot, which does not have a move-

able face capable of making facial expressions. We use

the SIRE paradigm [48], in which vocal utterances and

motor movements are abstracted into their dynamic

characteristics: Speed, Intensity, irRegularity, and Ex-

tent (SIRE). This abstraction is chosen because dynam-

ics such as SIRE have been shown to underlie emo-

tion across multiple modalities [47] and even across cul-

tures [66]. For example, slow, non-intense and small vo-

calizations and movements are perceived as sad.

How do we design an empathetic feedback loop?

The scheme for human-robot synchronization is shown

in Figure 3. The robot entrains to the dynamics of

the caregiver’s utterance by extracting speed, inten-

sity, irregularity and extent (SIRE) from the human’s

vocalizations, HumanSIRE , and reproducing them in

gesture and speech. However, it is more than simple

mimicry—we also integrate internal state of the robot.

Consider that a hungry infant could be soothed mo-

mentarily by a toy, but inevitably it would express dis-

tress until it was fed. Similarly, in the robot expresses a

combination of a) what it sees and b) its own internal

emotional state. InternalSIRE represents the dynamics

(SIRE 4-tuplet) it has learned to associate with its cur-

rent internal state until that moment. In addition, the

effects are dampened through time by deviating from

the previous SIRE expression.

4.2 Robot gut feeling

At birth, the human infant is equipped with the most

innate of emotional expressions: crying. Indeed, at this

point in development, the infant is in one of two phys-

ical states: homeostasis, or not (e.g., extreme heat or

cold, empty stomach). This in-built distress signal of

crying alerts the caregiver to a lack of homeostasis.

Inspired by newborns, we define a robot’s most ba-

sic level of physical “feeling” based on these two states.

Ortony calls the most innate emotional level the reac-

tive level which “assigns along two output dimensions,

one of which we call “positive” and the other “nega-

tive”” [25]. Similarly, Damasio defines feelings as “the

expression of human flourishing or human distress, as

they occur in mind and body.”[19]. Therefore, we define

two “innate” physical, gut feeling states for our robot,

which we will call flourishing and distress. In this pa-

per, these two states are represented symbolically, but

in future work they should be tied to a robot’s physi-

cal state, for instance flourishing corresponding to full

battery and CPU/motor temperatures within working

limits, and distress corresponding to a near-empty bat-

tery and/or hot motors.

This physical, gut feeling F = (flourishing, distress)

has 2 important functions. The first is to cause a dis-

tress signal to be emitted when the robot is in distress

state. The second is to serve as a switch (cf. the di-

amond symbol in Figure 4) for two sub-functions: a)

storing information into long-term memory based on

the value of F and b) retrieving information from long-

term memory based on the value of F . For example, if

the robot is in a flourishing state when a caregiver is

smiling and speaking to it in a happy voice, the sys-

tem will store this “happy voice” information in the

F = flourishing state (Figure 4). If the robot is in a

distress state and the caregiver tries to comfort it with

a soothing tone, the robot will store this “comforting”

vocal information into the F = distress state. At the

same time, if the robot is in a flourishing state, it will

sample from the trained GMM to produce an internal

SIRE value, and so on.
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Fig. 4 An overview of the system when the robot is in a flourishing state. The diamond symbol activates flourishing or distress
based on physical feeling F. The distress signal is active only when the robot is in a distressed state (e.g. low battery.)

4.3 Using SIRE Gaussian Mixtures Model as

emotional long-term memory

How is association between SIRE representations and

gut feelings stored into long-term memory? Here, we

use a statistical learning paradigm called SIRE Gaus-

sian Mixture Model (SIRE GMM), which we proposed

in [49]. Each GMM in SIRE space represents a class

C of flourishing and distress. We define an m-mixture

Gaussian in 4D SIRE space,

SIRE Emotionc(Xc) =

m∑
k=1

πkN (Xc|µk, σk) (1)

where Xc is a vector of SIRE tuples corresponding to

the class C, and m is the optimal number of components

to minimize the Bayesian Information Criterion (BIC)

over Xc [64].

Put simply, the essence of an emotional expression

is represented by four numbers, corresponding to speed,

intensity, irregularity and extent (SIRE). We create two

statistical models of these SIRE values, which are linked

to the physical states of flourishing and distress, respec-

tively. Together, we refer to the collection of these sta-

tistical representations (SIRE GMMs) as Multimodal

Emotional Intelligence, or MEI.

Learning To illustrate, let us assume that the robot

is in a flourishing (i.e., full-battery) state. A human,

following the intuitive parenting paradigm described

earlier, may begin to speak to the robot in a happy

way. In this case, since the robot’s physical feeling F =

flourishing, the human’s observed SIRE values

HumanSIRE will be added to the training data for the

flourishing SIRE GMM.

Expressing The robot’s expressed gesture and vo-

cal dynamics SelfSIRE depend both on the human’s

SIRE dynamics and the robot’s InternalSIRE . The value

of InternalSIRE is produced by sampling from the sta-

tistical distribution corresponding to the current phys-

ical feeling F . For example, when the robot’s physical

feeling F = distress (i.e., low battery), we sample from

the distress SIRE GMM.

As an intermediate step, we can imagine the robot’s

voice and movements being modified using SelfSIRE ,

a vector of four values on [0, 1], where

SelfSIRE = αHumanSIRE + βInternalSIRE , (2)

and α + β = 1, 0 ≤ α, β ≤ 1. This equation is further

refined in the following sections.

Empathy: The ratio of imitation and internal

state. How do we decide the values of α and β? Con-

sider that if α = 1, the robot shows perfect mimicry. If

β = 1, then the human in front of the robot has no im-

mediate effect on the robot’s expressions, and the robot

simply expresses based on its internal physical feeling.

These values can be considered a kind of empathy set-

ting for the robot. For example, if the human is express-

ing sadness, then a robot with α = 1 would immediately

portray similar sad vocal and gestural dynamics (high

empathy). On the other hand, a robot with β = 1 and

a full-battery state would simply convey what it has

learned to associate with it’s own flourishing physical

feeling, ignoring the sad expressions of the human (low

empathy). In our experiments, we generally set α and β

to be equal, but it would be interesting in future work

to test the impression of the robot when changing these

parameters.

Entrainment Entrainment is a term used to desig-

nate synchronizing with and adapting to the interaction

partner ([5], p. 134). As shown in Figure 3, we deduce
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Voice feature Parameter Gesture feature

Speech rate Speed Arm velocity
Change in volume Intensity Arm acceleration

High-frequency energy irRegularity Inter-arm phase shift
Pitch range Extent Gesture extent

Table 1 Low-level feature to SIRE mappings.

our current SIRE state based on the previous emotional

state, to designate a temporal entrainment between the

caregiver and the robot. Here is our final equation for

empathetic entrainment:

SelfSIRE = αHumanSIRE + βInternalSIRE

+ γSelfPREV SIRE , (3)

and α+ β + γ = 1, 0 ≤ α, β, γ ≤ 1. In our experiments,

we set α = β = γ = 1/3, and future work should test

other configurations for these parameters.

4.4 Real-time implementation of SIRE audio

processing

We implemented the system described in Figures 3 and 4

using the Aldebaran NAO robot and HARK (HRI-JP

Audition for Robots with Kyoto University)3 real-time

robot audition system. A Playstation Eye was used as

a microphone input, to avoid mixture with the robot’s

speaker output. The speech recognition system Julius,

trained with an English acoustic model, was used to

detect the words spoken by the user, in order to detect

the speed of the vocalizations. The mappings for SIRE

voice and gesture, and SIRE GMM learning mecha-

nism remained the same as defined in [48], shown in

Table 1. A demonstration video is available at this ad-

dress: http://youtu.be/f9F8FSVhBwM.

5 Experiment 1: Online collection of motherese

5.1 Purpose

The goal of this experiment was to test the system in

an online manner with naive experiments, and collect

the SIRE dynamics of their utterances for analysis.

5.2 Materials and procedure

We used the robot motherese system to collect infant-

directed samples of praise, comfort, prohibition and at-

tention from human participants. These correspond to

the four categories of motherese as defined in [27].

3 http://www.hark.jp

Fig. 5 A participant interacts with the robot by speaking
into a microphone.

We recruited 6 fluent English speakers from West-

ern countries (3 female, 3 male, mean age=29.8 years,

std=3.9): 3 from USA, 1 Australia, 1 Madagascar, 1

Chile. The participants were first introduced to the

robot through a written introduction, and told that the

robot’s name was ”Mei Mei”. The robot was introduced

as “young and continuously learning”, and that the par-

ticipants were the robot’s caregiver for the duration of

the experiment. The participants were also told that

the robot, because it is young, could not understand

the content of their words, only the way in which they

say it.

The participants were then instructed to interact

with the robot in four different motherese situations,

by speaking into the microphone and saying the robot’s

name, as in Figure 5.

1. Attention: Get Mei Mei’s attention by saying her

name.

2. Prohibition: Mei Mei is crying. You will try two

different ways to stop her from crying. First, you

will prohibit her from crying by saying ”Mei Mei”.

3. Comfort: Mei Mei is crying again. Your goal is to

soothe and comfort her by saying “Mei Mei”.

4. Praise: Your goal is to praise Mei Mei because she

is no longer crying, and make her feel that she is

loved.

For the purposes of controlling the experiment, the

physical feeling F was set manually to correspond to

the situation. In Situation 1 and 4, F = flourishing,

and in Situation 2 and 3, F = distress. In all four sit-

uations, the robot gestured to convey its affect using

SelfSIRE . In the 2nd and 3rd situation, to simulate a

distress signal, the robot also vocalized. The “cry” was

produced by repetition of the syllables “ma ma ma”.

This vocalization was also subject to SelfSIRE . In the

distress situations (2 and 3), SelfSIRE was initially to

[0.9, 0.9, 0.9, 0.9]. In the flourishing situations (1 and 4),

SelfSIRE was initialized to [0.1, 0.1, 0.1, 0.1]. The in-
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Fig. 6 Plotting the SIRE means of 1-mixture GMMs trained
in each condition.

teractions, of course, modified the robot’s internal state

continuously, based on Equations 4 and 5. All initial

settings were identical for each participant.

The interactions were recorded with a standard video

camera, as well as through the robot’s own front-facing

camera.

5.3 Results

The interactions resulted in 510 motherese utterances

in total (128 praise, 114 comfort, 123 prohibition, 145

attention). We plot the means of the resulting GMMs

in Figure 6. These correspond to the average dynamics

presented to the robot during each condition. We also

show example captures from the robot’s camera during

vocalizations in each condition in Figure 7. The vari-

ation across motherese vocalizations and facial expres-

sions gives qualitative weight to our hypothesis that our

robot system can elicit motherese and facial expression

that are differentiable across interaction types (praise,

comfort, prohibition and attention).

6 Experiment 2: Training with motherese,

testing with emotional voice

6.1 Purpose

The goal of this experiment was to test if motherese

could be an adequate training mechanism for learning

emotion dynamics. We do this by performing two anal-

yses.

First, we test whether the robot could associate

happy voices with a physical flourishing state, and sad

Fig. 7 Visual input accompanying the different kinds of
“Mei Mei” vocalizations: praise (top left), comfort (top right),
prohibition (bottom left), attention (bottom right). Images
captured from robot’s camera during each condition, mid-
utterance.

voices with a physical distress state. Indeed, if a robot

listens to a sad voice and associates it with its own expe-

rience of distress, this could provide evidence that our

approach provides a means for robot empathy. When

the participants praised and comforted the robot, they

spoke to the robot while it was in a physical state of

flourishing and distress, respectively. We therefore train

two SIRE GMM models on the caregiver input during

these interactions and check how they respond to happy

and sad voices.

Secondly, we hypothesize that all the utterances in

motherese (praise, comfort, prohibition and attention)

have correlates with adult-directed expressions of emo-

tions. If that is true, then our robot could learn to as-

sociate emotional voices to situations in which it heard

similar motherese utterances.

6.2 Materials and procedure

The utterances captured in Experiment 1 were used to

train two different MEI.

– The first MEI contained two GMMs, one for each of

the conditions flourishing and distress. The flourish-

ing GMM was trained with samples collected dur-

ing the praise condition, and the distress GMM was

trained with samples from the comfort condition.

– The second MEI contained four GMMs, one for each

of the conditions praise, comfort, prohibition and

attention.

Next, the emotional voice samples from an emo-

tional voice database called the Berlin Database of Emo-

tional Speech4, which is a database of emotional speech

4 http://pascal.kgw.tu-berlin.de/emodb/
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Detected Flourishing Distress
Input # associations # associations

Happiness 64 (90%) 7 (10%)
Sadness 10 (16%) 52 (84%)

Table 2 Emotional voice association detection rates on a
motherese-trained model

recorded by professional German actors. Further infor-

mation on this voice analysis can be found in [49]. The

emotional voice samples were tested against the MEI,

and the GMM which output the highest probability was

selected as the best match.

6.3 Results and discussion

6.3.1 Association of happy voices with flourishing, and

sad voices with distress

The results illustrate the robot’s empathy grounded in

physical feelings. In Table 2, we can see that happy

voices from the German database were associated with

the physical flourishing state 90% of the time. Sad voices

were associated with the distress state 84% of the time.

This result is reasonable when noticing the similarities

between the Praise (flourishing) and Happiness dynam-

ics, versus Comfort (distress) and Sadness dynamics in

Figure 8.

This suggests that a robot could develop a physi-

cally grounded association in response to happy and sad

voices, by exposing the robot to comforting and praise

motherese when it is in low-battery or high-battery

states, respectively. This is interesting because this lim-

ited exposure mimics the sequence of motherese di-

rected at very young infants: at 3 months, infants pre-

fer and receive more comfort vocalizations. Then, at 6

months, they prefer and receive approval (praise) vo-

calizations [41].

This is a significant result, because it shows that

exposure to motherese can result in adult-like empa-

thy. Consider that early robot emotion systems, such as

Kismet [11], were trained with motherese and were lim-

ited to recognizing motherese (specifically, motherese

spoken by females). Similarly, emotional voice systems

are trained with adult emotional speech to recognize

adult emotional speech (e.g., [5]). Cross-dataset recog-

nition is rarely attempted [49]. Our system is able to

make the leap because of its use of high-level abstract

features, recognizing male and female adult-directed

emotional voices with training only with motherese.

Finally, it is important to note that these associ-

ations are not simply recognition systems. They are

bidirectional, because the robot develops its emotional

Detected PRA COM PRO ATT p-value
Input (%) (%) (%) (%)

Happiness 54 10 24 13 0.0001
Sadness 0 65 2 34 0.0001
Anger 47 8 38 7 0.0001
Fear 12 13 13 62 0.0001

Table 3 Emotional voice association rates on a
motherese-trained model. PRA=Praise, COM=Comfort,
PRO=Prohibition, ATT=Attention.

expression based on the input it receives. In contrast,

the typical way to design a robot emotion system is to

assemble many recognizers and hand-designed expres-

sion systems, which do not interact [11]. This is limiting

because the robot is not adaptive: even if it is exposed

to hundreds of hours of emotional interaction, it would

not change the way it expresses emotion.

6.3.2 Associations of happy, sad, angry and scared

emotional voices

What happens when a robot has been exposed not only

to two types of motherese vocalizations, but four? Ta-

ble 3 shows the output of the robot’s recognition sys-

tem which was trained with motherese and analyses

adult-directed emotional voice. Our hypothesis is that

a) happy voices are associated most strongly with praise

b) sad voices associated with comfort c) anger voices

associated most strongly with prohibition. As a pre-

liminary hypothesis, it is not clear that fear (a negative

emotion) would correlate with attention voices, because

“attention bids” were described as a positive, playful

interaction for caregivers and infants in [28].

In Table 3, we first notice that recognition rates of

happiness and sadness drop, but that sadness is still as-

sociated with comfort at 65%, and happiness associated

with praise at 54%, both at levels significantly higher

than chance (Table 3). Happiness is sometimes asso-

ciated with the prohibition condition, at 24%. Anger

is not well associated, being confused with happiness.

Surprisingly, fear voices are associated with attention

motherese, to a high degree. It is interesting to note

that infants prefer motherese vocalizations in a preset

order: at 3 months, they prefer comfort vocalizations.

At 6 months, they prefer approval (praise) vocaliza-

tions. Lastly, at 9 months, they prefer directive vocal-

izations [41]. The association rates of first comfort, then

praise, and lastly prohibition parallel this infant pro-

gression.

In Figure 8, we can clearly notice the relationship

between emotional voices and motherese. Here, the GMM

means for both motherese and German emotional voice

models are plotted for comparison purposes. In Table 4,
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Motherese PRA COM PRO ATT
Emotional Voice

Happiness .13 .67 .20 .39
Sadness .39 .36 .47 .39
Anger .30 .72 .28 .37
Fear .30 .39 .43 .18

Table 4 Euclidean distance between SIRE means of
1-mixture GMMs for motherese and emotional voice
classes. PRA=Praise, COM=Comfort, PRO=Prohibition,
ATT=Attention. Lower values indicate that the two classes
are more similar. Distances in bold show the closest moth-
erese profile for a given emotion in voice.

we show the same data in more detail, by calculating

the Euclidean distance between the GMM means. We

can see that happiness and praise reside very close to

each other, as do fear and attention.

One way to interpret these results is that praise,

comfort and attention motherese build corresponding

elements of adult emotional intelligence. Notice that

the praise, comfort and attention conditions have very

clear correlates to happy, sad and fear voices (e.g., a

fear voice means that the human is trying to attract

their attention to something). Although we did not pre-

dict that the attention motherese condition would build

any appropriate emotional reaction, the fear and atten-

tion SIRE profiles appeared to be very similar (Fig. 8

and Table 4). This could make sense, since during fear

vocalizations by a caregiver, it would be necessary to

attract the infants’ attention of the danger. This being

said, further human studies to explore this idea would

be needed.

7 Limitations

We should note that the system is limited in the fol-

lowing ways. First of all, we did not address facial ex-

pressions, which are a major component of emotional

expression. Since motherese is also accompanied by ex-

aggerated facial expressions, however, it could likely be

added to future experiments using the framework as

described.

Secondly, we addressed only affective empathy. Cog-

nitive empathy may be a complementary empathetic

skill requiring higher levels of cognition, such as de-

scribed in Kozima’s related work in empathetic devel-

opmental robots [44]. Asada et al. also explore this idea

of robot empathy based on a “ knowledge base of ex-

periences” and “logical understanding” [4].

Further, we did not address other aspects of emo-

tion as defined in the introduction, such as action ten-

dency and regulation. Practically, a robot should per-

form these higher level aspects; for example, a robot

should not simply stay sad if we are sad, but rather

regulate its emotions to entrain to a positive state to-

gether.

Finally, we can consider an even deeper modifica-

tion of the robot’s internal state during emotional con-

tagion: if the robot has low battery, and a user expresses

happiness to boost the robot’s emotional state, might

the robot believe it has higher battery than it actu-

ally does? Would energy resources be allocated differ-

ently? This can lead to interesting discussions of robot

self-awareness and information hiding in an intelligent

robot.

8 Conclusions and outlook

What are feelings? Why do we feel pain when watching

others in pain? Ideas addressing the perplexing phe-

nomenon of emotion have been suggested in scientific

studies, but as roboticists building the system in detail,

aiming for authentic experiences, we must demand or

create better explanations. As stated by Richard Feyn-

man: “What I cannot build, I cannot understand.”

In this paper, we created a new and detailed expla-

nation for affective empathy, based on evidence in hu-

man neuroscience and developmental psychology. The

model proposed that feeling another’s sadness as one’s

own physical pain is the emergent result of 1) a func-

tional mirror system, insular cortex, and somatosensory

cortex and 2) specific motherese interaction with em-

pathetic human caregivers. Importantly, we created a

working robotic implementation of a mirror system ar-

chitecture as a proof of concept. Results showed that a

statistically learning robot exposed to praise and com-

fort interactions develops physically grounded “gut feel-

ing” associations in response to happy and sad voices.

Further, the robot trained with infant-directed “atten-

tion bids” recognized adult fear voices.

By isolating the empathetic function in a robot, this

paper raises important questions both about humans

and robots. Is this how human empathy is developed,

too? Could the lack of praise or comfort interactions

lead to non-empathetic adults? We propose this model

as a concrete framework towards better understanding

of the human emotion system, for the advancement of

both engineering and science.
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