

Could a robot be moved by music?

Using Motherese to Develop Multimodal **Emotional Intelligence for Robots**

Angelica Lim, Ph.D. Candidate, Okuno Lab, Department of Intelligence Science and Technology, Kyoto University

A robot that develops multimodal emotional intelligence as < 1 yr olds

1. Background

In 2010, we developed robots that could play music with humans.

Expression GERMS: Generative rules. Emotion, Randomness, Motion constraints, Stylistic unexpectedness [Juslin 2003]

While useful for practice, these and other empathetic companion robots are not accepted because they do not express true feelings: "nobody likes fake emotion."

2. Research questions

How can we create an emotionally authentic robot?

Authentic: "Made or done the same way as an original" (Merriam Wehster)

Can we make a robot develop and learn emotions like a human?

3. Development of emotional intelligence

First appearance

Primary Emotions

2 to 6 months

First 6 months

Emotion

11/2 to 2 years

[Sigelman & Rider, 2012]

Recognition

7-month old infants:

- can recognize happy/angry voices [Grossman et al, 2006]
- can recognize happy/angry motions (point-light display) [Soken and Pick, 2002]

9-month old infants:

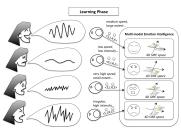
can discriminate sad/happy music [Flom et al., 2008]

4. Scope of my research

- an emotion model developed through interaction with a human, similar to <1 year olds
- expression and recognition of emotion in multiple modalities
- primary emotions happiness, sadness, anger, fear

5. Proposed Approach

Motherese: "Concurrent with the exaggerated speech of motherese, there are probably exaggerated facial displays. Child-centered displays may serve as opportunities for learning about affective events." [Soken and Pick, 1992]


6. SIRE Emotion Model

It's long been suggested that music emotions have its origins in the voice [Juslin & Laukka, 2001]. In 2011, we developed a crossmodality model to describe happiness, sadness, anger and fear through 4 common perceptual parameters: speed, intensity, regularity and extent (SIRE) [Lim et al, 2012]

Parameter	Description	Modality mappings to relevant emotional features		
		Voice	Gesture	Music
Speed	slow vs. fast	speech rate [20], pauses [18]	velocity [35], animation [36], quantity of motion [28]	tempo [24,26]
Intensity	gradual vs. abrupt	voice onset rapidity [18], articulation [20]	acceleration [35], power [37]	note attack [24], articulation [26]
Regularity	smooth vs. rough	jitter [18], voice quality [18,20]	directness [35], phase shift [38,39], fluidity [27]	microstructural irregularity [26], timbra roughness [24]
Extent	small vs. large	pitch range [20], loudness [18]	spatial expansiveness [36,37], contraction index [35]	volume [24,26]

7. Training by voice, Testing of motion

We train 2-mix Gaussian Mixture models with normalized SIRE samples from voice, one for each of our 4 emotions.

Recognition of emotion by taking the model with max probability.

Expression of emotion by sampling the desired GMM and perceptually mapping the SIRE to music [Lim et al, 2012] or motion [Lim et al,

8. Experiments

Recognizing emotion in motion (gait) Testing: Gait

Training: Voice

- Training: 408
- Happy and sad walks recognized well over chance
- Hot anger misrecognized as elation
- Anxious fear confused as sadness [Lim and Okuno, 2012]

Expressing emotion in voice & motion (see video)

- Happiness and sadness again well recognized.
- Terror fear expressed approaching the object was mistaken
- Cold anger expressed approaching the object lacked dominance component [Lim and Okuno, in prep.]

9. Future Work

- Offline → Online training
- Happy/sad as basis, scaffolding for anger and fear
- Grounding learned SIRE samples in positive and negative somatosensory states, e.g. battery levels [Ask to learn more!]