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Abstract— Let the human speak! Interactive robots and voice
interfaces such as Pepper, Amazon Alexa, and OK Google are
becoming more and more popular, allowing for more natural
interaction compared to screens or keyboards. One issue with
voice interfaces is that they tend to require a "robotic" flow
of human speech. Humans must be careful to not produce
disfluencies, such as hesitations or extended pauses between
words. If they do, the agent may assume that the human has
finished their speech turn, and interrupts them mid-thought.
Interactive robots often rely on the same limited dialogue
technology built for speech interfaces. Yet humanoid robots
have the potential to also use their vision systems to determine
when the human has finished their speaking turn.

In this paper, we introduce HOMAGE (Human-rObot Mul-
timodal Audio and Gaze End-of-turn), a multimodal turn-
taking system for conversational humanoid robots. We created
a dataset of humans spontaneously hesitating when responding
to a robot’s open-ended questions such as, "What was your
favorite moment this year?". Our analyses found that users
produced both auditory filled pauses such as "uhhh", as well
as gaze away from the robot to keep their speaking turn. We
then trained a machine learning system to detect the auditory
filled pauses and integrated it along with gaze into the Pepper
humanoid robot’s real-time dialog system.

Experiments with 28 naive users revealed that adding au-
ditory filled pause detection and gaze tracking significantly
reduced robot interruptions. Furthermore, user turns were 2.1
times longer (without repetitions), suggesting that this strategy
allows humans to express themselves more, toward less time
pressure and better robot listeners.

I. INTRODUCTION

Films and science fiction have long imagined robots
conversing with us as naturally as humans do. Star Wars’
C3P-O, the original social robot for "human-cyborg relations",
could deftly converse with people of many nations. More
recently, the AI character Samantha from the movie "Her",
had rich, meaningful discussions with her human counterpart.
Today, these imagined characters are becoming closer to
reality. Speech processing has made great strides in the last
decade, with interactive robots such as Pepper1 and voice
interfaces such as Amazon Alexa2, OK Google3, Siri4, and
Cortana5 hitting the market.

Yet robots still need improvements to converse as naturally
as humans do. One issue, for instance, is that we must speak in
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a very specific way to interact with robots through speech. We
must speak clearly, without hesitation or pauses, preferably
without any "umms" or "ah"s. Unfortunately, according to
work by George Mahl, humans emit these kinds of disfluencies
on average once every 4.4 seconds [26], pausing to allow
themselves time to think, for example. In these cases, a speech
system could assume the human has finished speaking, and
abruptly interrupt or process an incomplete idea.

Various strategies exist to attempt to address this interrup-
tion issue. Many of today’s voice services rely on automatic
speech recognition and natural language understanding to
detect if the user’s command is complete6, thus partially
solving the interruption issue. In this case, however, if the
user’s input is composed of multiple sentences, only the first
sentence will be processed; incremental dialog strategies [15]
can help here. Other systems simply allow the use of a button
to end the speaking turn7. In proactive dialogue systems,
another way to avoid the issue is to ask specific, non open-
ended questions such as "Which colour do you like better,
red or blue?". More often than not, it is the human who
adapts themselves to the system, speaking in one breath a
strung-together sequence that is "perfect", conforming their
communication style to the machine’s constraints.

A. Turn-Taking in Conversational Analysis

Turn-taking has been studied since the late 1960’s as part
of human conversation analysis (see, for example, [32]). It
includes concepts such as conversational floor, which can
be "held" or "relinquished" when a speaker continues to speak
or ends their speaking turn, respectively.

Another important concept is overlaps, when one speaker’s
speech overlaps with the currently speaking person. De-
pending on the culture or region, overlaps may occur
more or less often when conversing [36]. Some overlaps
are cooperative [38], for instance as continuation of the
interlocutor’s speech or backchannels such as "uh huh".

On the other hand, some overlaps are competitive, which
we call interruptions in this paper. Seizing the speaking turn
and changing the topic can be associated with displays of
power, dominance, and threat [16][41]. As such, it could be
important for robots and AI to avoid these overlaps, lest they
be perceived as dominating over human speakers.

Filled pauses or fillers (used interchangeably in this paper),
such as "uh" or "umm", are frequent in natural conversation
and indicate thinking and/or a desire to continue speaking

6https://developer.amazon.com/public/solutions/alexa/alexa-voice-
service/reference/speechrecognizer

7https://www.google.com/intl/en/chrome/demos/speech.html



[10]. The general consensus in the linguistic community
is that these are not errors but a normal part of language
and conversation [6], [25], [29], [35]. Relatedly, there exist
also silent pauses between words or phrases, separating
installments of speech within a speaking turn [39].

Gaze is another way to indicate the end of a speaking
turn. Studies show that humans will typically look up, to the
side, or down while thinking, and then return their gaze to
their interlocutor when they are finished speaking [19] [3]. A
thorough review of gaze in conversation can be found in [30].

B. Previous Work

1) Filled Pause Detection: In the audio processing field,
much study has already been done on detecting filled
pauses [40]. In 1999, Goto [18] detected filled pauses in
real-time by tracking the fundamental frequency and spectral
envelope of speech in Japanese. More recently, thanks to
the publication of the Interspeech 2013 SVC dataset, more
researchers attempted to detect speech signals such as laughter
and filled pauses [23]. For instance, An [2] extracted 9
different features from the speech signal and trained an
SVM classifier to detect laughter and filled pauses. Salamin
investigated mobile telephone conversations, classifying data
into laughter, fillers (including filled pauses), speech or
silence [33].

2) Human-Agent Turn-Taking: Some dialogue systems also
take into account non-verbal sources of input. For instance,
the SimSensei Kiosk by Devault et al. [11] is a state-of-
the-art system that allows an animated agent to serve as a
virtual therapist. The agent, Ellie, asks open-ended questions
such as "Tell me the last time you felt really happy". The
authors reported using multimodal information, including gaze
detectors, to adapt the agent’s non-verbal behaviors. Results
based on a subjective questionnaire showed that 56.1% of
users would recommend the automated system to a friend.
However, no objective results nor details about using gaze
detection with respect to turn-taking were reported.

Several human-robot interaction studies have investigated
the role of gaze turn-taking. Firstly, some studies adjusted the
robot’s own gaze to improve human-robot dialogues (see also
[24], [5]). Chao studied humans speaking to a robot that spoke
in non-linguistic utterances (babbling), and used the robot’s
gaze to indicate speaking turn [9]. Andrist’s study showed
that a robot that performed gaze aversion was considered
more thoughtful and better managed the conversational floor,
with humans interrupting it less [3]. A recent review of robot
gaze can be found in [1], and a review about gaze in virtual
agents in [31].

In terms of human gaze in human-robot interaction,
Sugiyama et al. [37] tracked human speech, face and hip
movement to decide if it was appropriate for the robot to take
its speech turn. They used Wizard-of-Oz data containing 60
interactions with the NAO robot to perform offline analysis.
In that study, they learned that the top salient features when
deciding if the robot ought to taking its speaking turn or not
were: a) whether the sound it heard was speech or not, and b)
user motion and face direction after the sound. The present

paper builds on these insights to create, to our knowledge,
the first real-time system to use filled pause detection and
gaze to manage conversational turn-taking with robots.

C. The HOMAGE System

In this work we present the HOMAGE (Human-rObot
Multimodal Audio and Gaze End-of-turn) system, built to
relax constraints and accept filled pauses, allowing a human
to complete their utterance without any time pressure. We
create and train a classifier using a new dataset containing
filled pauses, captured by a robot’s microphones. We also
exploit the affordances induced by a humanoid robot face to
include the analysis of a human’s gaze, captured by a robot’s
camera, as another cue for speech end-of-turn.

The outline of this paper is as follows. First, we give
an overview of the autonomous interactive robot used in
this study. Secondly, we describe the creation of a filled
pause detection system, as well as its evaluation. We also
describe the gaze detector used for this work. Thirdly, we
present our HOMAGE turn-taking system that combines our
filler detection method and human gaze information into the
dialogue system. Finally, we present an experiment evaluating
the system. We conclude with discussions and future work.

II. CONVERSING WITH PEPPER THE HUMANOID ROBOT

Our goal in this research is to improve human-robot
interaction by detecting and using nonverbal cues of the
human to control speaking turn structure. In order to lead
a successful conversation, it is important to recognize turn-
exchange points and know when it is acceptable or obligatory
to take one’s turn in conversation, choose an appropriate gap
between turns, decide when an overlap is allowed, and so on.

The chosen robotic platform is the humanoid robot Pepper
developed by SoftBank Robotics (Fig. 1). The operating
system of the robot is NAOqi OS which features a number of
modules that allow Pepper to interact with its environment.

In observed human-robot interactions, we noticed that
Pepper’s dialog module, which endows the robot with
conversational skills, contains limited functionality for turn-
taking in the case of open-ended questions, such as "How
was your summer?". The default solution, where the robot
continues the interaction as soon as it detects speech followed
by a pause of 200ms, is very efficient for one-word replies
like "Good", but in other situations often causes an overlap.
For example, Pepper could reply "I’m happy to hear that"
before the human finishes giving additional details. Another
reason for overlap is that a user may begin their response with
a filler such as "hmm..." that may be detected as speech. In
these cases, dialogue processing is triggered before the human
even started their actual reply. On the other extreme, if the
robot waits for several seconds of silence after each utterance
before taking its speech turn, humans can be confused due
to lack of robot reaction.

III. FILLED PAUSE AND GAZE DETECTION SYSTEMS

In this section, we describe the collection of real human-
robot dialogue data to 1) use for training of a real-time filled



Fig. 1: Conversing with Pepper the humanoid robot.

pause classifier and 2) analyze the pertinence of tracking
human gaze for turn-taking. We also provide details about
the classifiers and evaluation of the filled pause detector.

Filled pause data collection

We recruited 43 people at SoftBank Robotics Europe with
previous experience in robotics. The scenario, developed as a
Pepper application using the QiChat dialog scripting language,
consisted of open-ended questions about their job satisfaction
and ideas for improvements of the robots they worked with.
The participants were not informed of the study purpose,
asked only to respond to the robot’s survey questions.

The participants interacted with Pepper in English. Since
some participants did not produce filled pauses, and in some
interactions data was not usable because of too much external
noise, 31 human-robot interaction formed our final dataset.

Audiovisual data was recorded in the ROSbag format 8

using the NAOqi-ROS bridge9, useful for collecting multiple
data streams from multiple robot sensors in a synchronized
fashion. Finally, to train our model for filled pause detection,
we annotated 74 filler instances and speech in 168 recorded
questions. Only filled pauses of minimum duration of 300
ms, filled with non-verbal utterances like "uh" or "umm" and
appearing throughout different parts of the response, were
taken into account. Lexicalized fillers such as "well", "like"
or repetitions ("the-the-the") were not included.

8http://wiki.ros.org/Bags
9http://wiki.ros.org/naoqi_driver

A. Filled Pause Detector

1) Features: Audio analysis was performed on the audio
signal recorded from Pepper’s microphones. It consists of a
four channel interleaved signal with a sample rate of 48000
Hz and 170 ms buffer. There are only slight differences
between channels, allowing to perform speech localization.
Only front channel signal, from the microphone closest
to the speaker, was used for extraction of Mel-Frequency
Cepstral Coefficients (MFCC). Cepstral features are often
used in speech recognition and showed success in detection of
nonlinguistic vocalizations such as laughter [22]. We use 25
MFCC coefficients out of 40 computed Mel bands between
0 and 22050 Hz. Coefficients are computed over a window
of 23.2 ms with a 50% frame overlap. To catch the dynamic
properties of the signal, i.e., the combination of features over
several frames, early temporal integration was performed.
The per-frame values for each coefficient were summarized
across time using the following summary statistics: minimum,
maximum, median, mean, variance, skewness, kurtosis and the
mean and variance of the first and second derivatives, resulting
in a feature vector of 225 elements. This technique proved
to be very efficient in similar problems such as automatic
urban sound classification [34].

2) Creation of training and test sets: The dataset was
divided into training and test sets, and the former further
divided into folds for cross-validation. Folds cannot be
generated completely randomly: to avoid artificially high
results, slices from same recording should never be placed
both in training and test set. Moreover, distribution of filler
and speech instances should be constant in each fold.

This distribution problem was solved with a heuristic
approach, first-fit decreasing algorithm. First, subjects with
the longest filler duration were distributed to each fold and
test set. In the next step we tested multiple solutions where
we randomly appointed the remaining users in different folds
and chose the solution that ensured the most even distribution
of fillers.

3) Training: We used the scikit-learn library10 for Support
Vector Machines (SVM) and Random Forest implementations.
We experimented with three types of kernel for SVM: linear,
polynomial of second degree and RBF. Due to data scarcity
we didn’t focus on parameter optimization; hyperparameters
of the models were set to default values in the library.

All audio features were normalized to a zero mean and
unit variance. Both of the models were trained on 77% of
data while the remaining 33% were test instances.

4) Classifier evaluation: In this filler-versus-speech clas-
sification problem, the dataset was highly imbalanced: ap-
proximately 1/4 of the data were fillers and 3/4 were speech.
Therefore, a standard evaluation metric accuracy was not
appropriate. The chosen evaluation for binary classifiers in
this research was area under ROC curve (AUROC), defined
on a traditional 0-100% scale and created by plotting the true
positive against the false positive rate.

10http://scikit-learn.org



Classifier AUROC

Linear SVM 76.2 %
RBF SVM 74.2 %
RF 71.6 %

TABLE I: Evaluation of top performing classifiers. Perfor-
mance is defined per frame, not filler/speech instances

Cross-validation for optimal window frame for early
temporal integration was performed on audio data with 10
lengths in range 0.1 and 1 second. The chosen value was 0.5
seconds. The results of the three best performing models are
shown in Table I. Performance is not defined per filler and
speech instance but per frame.

This approach is simple but approximates the state of
the art: [28] proposes a system for detection of laughter
(another type of vocalization) using RASTA-PLP features
combined with the temporal derivative and Gaussian Mixture
Models for classification, and a similar result of 82.5% is
achieved. In [17], a late temporal integration with a weighted
average time series smoothing filter using genetic algorithms
and an AdaBoost.MH model showed an AUROC score of
89.5%. We believe that a larger training set, as well as further
analysis of acoustic properties of filled pauses, with additional
information from temporal features, could show even better
performance.

B. Gaze Detector

During the analysis of the present dataset, we noticed that
many participants were spontaneously using gaze aversion as
another cue to signal turn-holding and turn-yielding. Gaze
aversion, a nonverbal cue of cognitive processing, facilitates
turn-taking in conversations according to literature in human
conversational analysis [19]. People tend to break eye contact
at the beginning of the utterance to claim their turn and
focus on formulating the answer. At the end of their response,
speakers often look at the listener to signal that they finished
their answer and that they invite the listener to take the
conversational floor [3].

Some HRI studies showed that this human-human gaze
aversion behavior is also applicable in human-robot conversa-
tion [21], especially for embodied robot such as a humanoid
robot [8]. Moreover, we also observed that the same pattern
occurred in our recorded human-robot interactions. Therefore,
we chose to improve our turn-taking system by adding these
cues as input to make the final decision on whether the user is
keeping or relinquishing the floor. Pepper’s ALGazeAnalysis
module was used to collect gaze features with a frequency
of 5 Hz: gaze direction, head angles and eye opening degree.
In this research we focused on gaze direction.

Figure 2a illustrates the turn-taking behavior of one of the
participants while responding to a question. Figure 2b depicts
the corresponding gaze direction data, filtered based on the
movement of the robot. It is just one example suggesting
that humans interact with humanoid robots in a similar way
as with other humans. The response starts with a thinking
phase accompanied by a rise in gaze direction yaw and pitch

(a)

(b)

Fig. 2: (a) Example of participant’s gaze and head movement
while responding to a question. Images are taken from
the robot’s camera during the experiment. (b) Human gaze
direction time series plot. Data is recorded from Pepper’s
ALGazeAnalysis module, where 0 radians corresponds to the
human looking into the robot’s eyes.

values. The middle phase is the human’s verbal reply with
occasional pitch value changes. At the end the participant
looks back to Pepper, thus giving up the conversational floor
in favor of the robot.

Sugiyama et al. [37] highlighted that one of the most
important features for turn-taking strategy is the user’s face
direction after the utterance. Relying on this study, our gaze
detector tracks the gaze information only during the most
relevant time, i.e. after the end of the utterance. To define
the best time frame to collect data, we relied on our own
data observation supported by Cathy Pearl’s work on end-of-
turn timeout [27, p. 113]. According to her, a timeout of 1.5
seconds is a good rule of thumb for voice user interfaces in
general. Therefore, we implemented this 1.5s time frame to
track gaze direction after the end of a speech utterance, as
well as a yaw and pitch value range, to distinguish whether
the person is trying to keep or relinquish the conversational
floor.

In short, using estimated gaze direction from robot’s point



of view collected at the frequency of 5Hz, we defined an
angle of +/- 0.15 radians for yaw and pitch, inside which the
human is said to be looking at robot, and outside of which
the human is said to be averting their gaze. The final decision
is made by time averaging data over the given frame.

IV. MULTIMODAL END-OF-TURN DETECTION SYSTEM

In this section, we describe Human-rObot Multimodal
Audio and Gaze End-of-turn (HOMAGE) detection system.
This is a rule-based model using the Filled Pause Detector
and Gaze Detector described in the previous section.

After each user utterance - a continuous speech segment
longer than 200 milliseconds - a decision is made whether
the user is relinquishing the conversational floor or keeping
it.

This decision works as follows:
• Step 1. Filled Pause Detector on heard utterance.
• Step 2. Gaze and audio analysis for 1.5s.
• Step 3. Decision on end-of-turn.
In step 1, audio analysis is made on the utterance with

our Filled Pause Detector. The system provides the number
of fillers if some occurred in the utterance, along with their
position.

In step 2, at the end of the utterance, the system waits for
a duration of 1.5s for two purposes. One is to be aware of
installments, speech separated by silent pauses that can be
introduced in spontaneous conversation. Indeed, people can
sometimes have short gaps of silence inside their sentence
that could be mistaken as the end of turn. To be robust to
this situation, we decided to allow any speech detection in
this period to restart the system from the step one. The other
purpose is to gather gaze information to be processed by our
Gaze Detector.

In step 3, after this pause, we make a decision on end-
of-turn by combining those cues in a rule-based algorithm.
An utterance ending with a filler will automatically lead to
a result of user keeps the turn. Otherwise, we use the gaze
results to make a decision: if the user was looking directly to
the robot on average, we presume user end of turn and the
robot takes the floor. Otherwise, it is a user keeps the turn
and the robot waits for the user to finish. We implemented
these rules in our decision tree (see Figure 3).

V. EXPERIMENT AND EVALUATION

The purpose of this experiment was to test our multi-modal
turn-taking system. We implemented the HOMAGE model
in the robot Pepper and compared its performance with the
default turn-taking model during a dialog interaction.

In this section, we call the default turn-taking model the
"gap-turn" system, in which the system considers that the
user gives back the floor when the system detects a silent
gap longer than 200 milliseconds.

We set up our experiment on two Pepper robots. The idea
was to have one robot functioning with the gap-turn system,
the other with the HOMAGE system. Both run a questionnaire
scenario where the robot poses open-ended questions, as our
goal was to produce long answers including hesitations and

Fig. 3: Overview of the HOMAGE system

reflection time. For the participants to not answer the same
questions twice, we created two sets of 5 questions each: one
set of questions about the company and workplace (Question
Set A), and one with more personal questions (Question Set
B).

We conducted our experiment on 28 people - 12 females
and 16 males - who did not have experience in communication
with the robot. Each of them was asked to interact with both
robots in English, one after the other. To avoid order and
question set bias, we divided them into 4 groups:

• Group 1 (7 participants): Question Set A + Gap-turn
system, Question Set B + HOMAGE system

• Group 2 (7 participants): Question Set B + Gap-turn
system, Question Set A + HOMAGE system

• Group 3 (7 participants): Question Set A + HOMAGE
system, Question Set B + Gap-turn system

• Group 4 (7 participants): Question Set B + HOMAGE
system, Question Set A + Gap-turn system

A. Expressiveness of the robot

During conversation, human listeners do not remain still
but use backchannels such as nodding or "uh huh" sound
to express their engagement towards the speaker. Therefore,
a contextual backchannel was added to both robots: both
robots maintained eye contact and nodded at each end of
user utterance. This feedback was aimed to help the user
acknowledge that the robot heard them well and to encourage
them to speak more.

B. Annotation

Using the software ELAN11, we annotated each of the
participant’s responses to each robot question. A human’s
response was defined as the time from the end of the robot’s
question to the beginning of its next question.

Each response could have two classifications: success and
failure.

Success. The response is annotated as a success if the
system correctly detected the end of the human’s speaking
turn. For successful outcomes, we also annotated the duration
of the answer of the participant as well as the robot’s reaction

11https://tla.mpi.nl/tools/tla-tools/elan/



(a)

(b)

Fig. 4: (a) Successful response. The user ended speaking
before robot response. (b) Failed response. The user was
interrupted due to a misclassification of a filler followed by
a silence as an end-of-turn.

time to the end of their speech. The answer duration was
defined from the moment the participant started their answer,
either with speech or a filled pause, to the end of their verbal
answer. The reaction time was defined as the time between
the last moment the human spoke and the moment the robot
started the next question.

Failure. An annotation of failure was given if the participant
was either interrupted by the robot (overlap) or repeated their
answer because of lack of robot reaction (repetition). The
interruption does not only include situations when the robot
and the participant spoke simultaneously, but also when it
was evident (based on linguistic meaning) that the participant
did not finish their thought. Situations where the user was
adding new responses just because the robot did not move
to the next question was also considered as repetition.

Examples of successful and failed response in the wave
form can be seen in Figure 4.

C. Results

The results among the groups that were presented with the
gap-turn model first, and the groups that tested HOMAGE
system first were homogeneous. Therefore, we decided to
integrate the results of different groups for the same turn-
taking strategies. Moreover, due to certain loss of data, only
recordings that contained at least 80% of the interaction
(answers to minimum 4/5 questions) are included in this
quantitative analysis, resulting in 22 human-robot interactions
of 4 to 5 questions for the initial turn-taking strategy and
21 interactions of the same number of questions for the
HOMAGE system.

Table II depicts the results as a rate of answer outcome to
questions, 101 recorded questions for the gap-turn system and
104 questions for the new HOMAGE system. The success
rate therefore represents a ratio of questions in which the
robot correctly detected the end of the answer (and continued
the conversation in appropriate moment), over all recorded
questions. The failure rate is split based on the reason of
failure: the participant was either interrupted by the robot

(overlap) or was forced to repeat the answer. Certain answers
can belong to both groups of failure.

Interaction outcome
Turn-taking strategy Success Overlap Repetition

Gap-turn System 50.5 % 38.6 % 10.9 %
HOMAGE System 63.5 % 13.5 % 26.0 %

TABLE II: Results of turn-taking strategies as a percentage
of the total number of turn exchanges

The results show that the new HOMAGE turn-taking
strategy decreased the number of interruptions. The difference
was found to be statistically significant by Fisher’s test at a
95% confidence interval (p = 5.39∗10−5).

Unfortunately, the repetition rate increased (p = 6.75 ∗
10−3 < 0.05). One of the reasons can be filler mis-detection
that can be addressed by collecting more training data.
Moreover, some of the participants did not behave the
same way in interaction with the robot as they behave
in conversations with other people: some of them felt
uncomfortable speaking to the robot and acted disengaged,
others averted their gaze from the robot so they could focus
more on audio comprehension because of lack of visual
feedback (in human-human interaction we gain a lot of
information from the lip movement). Thus, those participants
didn’t provide the necessary gaze feedback to signal that they
had finished their turn of speaking. Another reason could be
the responsiveness of the systems. Reaction time, defined as
the time between the end of the answer of one question and
beginning of the next one, was only 0.87±0.26 seconds for
the initial gap-turn system and 2.55±0.67 seconds for the
new one.

The results also suggest that adding filler and gaze detection
increased the success rate. The difference approaches signifi-
cance but is not statistically significant (p = 0.0677 > 0.05).
One possible explanation is that tracking gaze direction was
not sufficient to detect gaze aversion. Instead, gaze direction
should be combined with head angles of the user, as looking
significantly away from the robot can result in unknown gaze
direction.

Finally, the experiment showed that the new turn-taking
strategy increased the average answer duration of users when
speaking to the robot (Figure 5). Excluding cases of repetition,
when using the HOMAGE system, participants spoke an
average of 2.7 seconds longer, an average of 2.1 times longer
than the baseline condition.

The results per question are shown in Figure 5, calculated
only on successful (non-repetition, non-overlap) responses.
The answer to question 5 in Question set A ("How would you
like to improve me, Pepper?") is the only one not consistent
with the hypothesis. The largest average duration difference
of 5.5 seconds can be found in question 2 in the Question set
B ("What is your favorite place in Paris and why?") which
is a well formulated open-ended question since the user is
asked to explain his/her choice.



(a) Question set A

(b) Question set B

Fig. 5: Average answer duration to open-ended questions

VI. DISCUSSION AND FUTURE WORK

The tendency in interactive technologies, such as social
robots, is to use a speech interface to communicate and
interact. In this work, we wanted to achieve a step towards
natural and fluid spoken conversation between humans and
humanoid robots.

In this paper, we argue that gaze is an essential cue in
conversational turn-taking. Indeed, our results showed that
combining both gaze and filled pause detection led to a
decrease in robot interruptions, in the case of the robot asking
open-ended questions.

The results also showed that the HOMAGE system resulted
in longer human utterances, notably due to this decrease in
interruptions. We expect that longer speaker turns, along with
strategies such as active listening [20] have the potential
to make a robot appear to be more contingent [13] and a
better listener [4]. Further user studies should be performed
to check the subjective effect of allowing the user to speak
longer thanks to HOMAGE.

As the baseline system we chose the default turn-taking

model with a silent gap of 200ms, but we believe that a
comparison with a system with equal response time can give
us even better insight into the importance of gaze and filled
pause detection.

In analyzing the recorded sequences, we found out that
people also use other cues to keep or release the floor. For
example, some of them leaned toward the robot to speak
and backed off at the end, as noticed by [37] as well. The
intonation of the voice changes too: there could be a rising
or falling in voice tone at the end of the last sentence, or a
drawn out of the last syllable. Our HOMAGE system could
be improved by taking more of those signals into account in
a next step.

It is also possible that we could improve the system by
understanding the differences between human-human and
human-robot relations. When implementing social interaction
systems, we often rely on the study of the human-human
strategies. Here, we were influenced by sociology research
on speech-exchange systems and conversational turn-taking
[7] [12], as well as our own understanding of this model. We
thus expected the participants to act as in a human-human
conversation, but there are obvious differences. For example,
sometimes at the end of their speech, people turned their
ear toward the robot or closed the eyes to concentrate on
the robot answer, while we humans may look at the lip
movement of the speaker to better understand their words.
Another difference is the robot appearance that may influence
the behavior of the participant; Pepper has non-moving eyes
plus a tablet. Continued study of human-robot conversation
in the wild would be certainly interesting for us to improve
our system.

Finally, it would also be interesting to try and understand
the impact of such a system in an overall interaction with the
robot. Funakoshi et al. [14] provides some insight into the
impact of latency; interestingly, it is not necessarily better to
provide instant robot replies, but long wait times can make
users uncomfortable. Future work should measure the user
acceptance of the robot reaction time with the HOMAGE
system. The attached video can provide insight into the latency
observed during the study.

In particular, we noticed that there appeared to be two
types of participants: a) people who speak to the robot as
with their phones, adapting their responses to those known
turn-taking systems, and b) those who tended to speak in a
more natural way, giving longer answers. Reasoning on that,
the HOMAGE turn-taking system may have a greater positive
impact on the overall feeling of the interaction for those long-
speakers. Understanding this bias of the users adaptation to
current speech interfaces is an interesting insight for future
work.
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