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Abstract 
In this chapter, we explore social constructivist theories of emotion, which suggest that emotional 
behaviors are developed through experience, rather than innate. Our approach to artificial emotions 
follows this paradigm, stemming from a relatively young field called developmental or ‘epigenetic’ 
robotics. We describe the design and implementation of a robot called MEI (multimodal emotional 
intelligence) with an emotion development system. MEI synchronizes to humans through voice and 
movement dynamics, based on mirror mechanism-like entrainment. Via typical caregiver interactions, 
MEI associates these dynamics with its physical feeling, e.g. distress (low battery or excessive motor 
heat) or flourishing (homeostasis). Our experimental results show that emotion clusters developed 
through robot-directed motherese (“baby talk”) are similar to adult happiness and sadness, giving 
evidence to constructivist theories. 

 

1 Introduction 
“Some of the most revolutionary ideas in brain science are coming from cribs and nurseries.” 
– Patricia Kuhl 

Are emotions innate? Recently, the popular Darwinian theory that basic emotions – such as happiness, 
sadness and anger  – are “hard-wired” through evolution has been called into question. Psychologists 
have collected growing evidence (see reviews, (Mason & Capitanio, 2012; Camras & Shuster, 2013; 
Barrett, 2006)) that emotions may not in fact be completely a product of innate biology. Instead, 
“social constructivist” theories (Averill, 1980) point to experiences and environment as a prime factor 
for the development of emotions:  

“While there is little doubt that what we call fear, anger, and sadness refer to real (i.e., 
observable) phenomena and important parts of human experience, the weight of scientific 
opinion appears to be shifting away from the view that a few specific emotions are natural 
and universal kinds, laid down in the biology of humans and other animals (nature), in favor 
of a larger place for experience (nurture) in all emotions”– (Mason & Capitanio, 2012, p. 239) 

Let us briefly illustrate this view with evidence from infant psychology, animal behavior and cultural 
emotion psychology.  

In infant developmental psychology, (Camras L. A., 2011) has pointed out several 
phenomena that support the constructivist view. Firstly, emotional facial expressions were observed in 
infants where the emotion was not expected to occur: 5-7 month olds showed prototypical surprise 
expressions while bringing familiar objects into their months (Camras, Lambrect, & Michel, 1996). 
Secondly, emotional expressions were not observed in contexts during which the emotion should have 
occurred: 10-12 month olds in the visual cliff procedure rarely produced the fear expression, even 
though their other behaviors showed that they did in fact experience fear (Hiatt, Campos, & Emde, 
1979). Finally, Camras and her colleagues also found that negative emotion classes (such as anger, 
sadness and fear) did not seem to differentiate well in infants as old as 11 months, suggesting that 
they all corresponded to a general negative “distress” affect. (Camras L. A., 2011).  

 

Studies on atypical caregiver conditions in young animals also support the social 
constructivist view. In a study with rats, it was shown that when mother rats’ maternal style contained 



	  

more licking and grooming, their pups grew up to be less fearful, with decreased hormonal reactions 
to stressors (Kaffman & Meaney, 2007). In studies with rhesus monkeys, maternal separation early in 
life affected gene expression in brain regions controlling socio-emotional behaviors, with a 
correlation on the timing of the separation (Sabatini, Ebert, Lewis, Levitt, Cameron, & Mirnics, 
2007). For example, monkeys separated from their mother at 1 week of age showed less expression of 
the gene GUCY1A3 (associated with social-seeking comfort behaviors), compared to the 1 month old 
separation condition. 

Human studies on atypical early caregiving conditions also exist, though are more rare due to 
ethical issues. For instance, observations on postinstitutionalized (PI) children, such as those adopted 
from Eastern European orphanages after World War II, provide evidence that nurture is important for 
emotional intelligence. According to (Fries & Pollak, 2004), PI individuals had difficulty matching 
appropriate faces to happy, sad and fearful scenarios, yet were able to match angry faces just as well 
as controls. We refer the reader to further observations on the effect of early adverse rearing in work 
by Tottenham et al., e.g., (2011). In addition, temperament, while thought to have an inherent basis 
from birth, is not stable over the lifetime. In a short-term longitudinal study, (Calkins, 2002) found 
that infants who experienced negative parenting continued to show high anger/frustration levels, 
though it was not the case for infants who experienced positive parenting. Studies such as these 
emphasize the importance of emotional input early in life. 

Psychologists studying emotions across cultures also observe variations that question the idea 
of universal emotion definitions. According to research by Tsai, ideal affect tends to differ between 
Eastern and Western cultures (Tsai, 2007). Individuals in Western cultures report “feeling good” as 
high-arousal positive (HAP) affect, whereas Eastern cultures prefer low-arousal positive (LAP) affect, 
even after controlling for self-reports of temperament and other individual differences (see (Tsai, 
2007) for a review of experiments). As a simple illustration, (Hess, Beaupré, & Cheung, 2002) 
reported that a large proportion of Asian Canadians preferred smiles from 20-60% intensity, whereas 
European Canadians significantly preferred smiles from 80-100% intensity. In cross-cultural emotion 
behavior recognition experiments (Elfenbein & Ambady, 2003) noticed a 9.3% drop in accuracy 
when attempting cross-cultural facial judgments. A similar study on vocal cues observed a 7% drop 
(Juslin & Laukka, 2003). While cultural display “rules” have been suggested by Ekman (Ekman & 
Friesen, 1969) to account for these differences, details on how these are developed (and how display 
rules account for recognition and preference, in addition to expression) remains an open area of 
research. 

Most interestingly for the topic of this book, this emerging “constructivist” perspective on 
emotion theory opens up a new avenue for artificial emotion systems. This is because emotion 
theories (Cornelius, 2000) such as Darwin’s Evolutionary theory, James’ Bodily Theory, and 
Cognitive Appraisal Theory have presented several practical challenges for roboticists. In the Darwin 
paradigm (Darwin, 1872/1965), we face the problem of ecological validity of the “basic” emotions 
(Ekman, 1992) – full-blown emotions often studied in psychology rarely appear in typical human-
robot interaction scenarios. In the Jamesian view (James, 1884), without biological bodies, nervous 
systems, hearts, and so on, it appears impossible for robots to ever have emotions and feelings. Critics 
suggest that copying surface behavior of emotions, such as facial expressions and poses, do not 
“count” as real emotions, and their use in companion robots has been called unethical (Turkle, 2012). 
Appraisal Theory (Frijda, 1986) has been the most advantageous for creating emotional behavior in 
artificial agents (e.g. OCC (Ortony, 1990)), where large and complex rule sets define emotional states 
and expressions. Yet these hand-designed rules are difficult to design because the engineer must 
completely describe all possible scenarios in which emotional reactions might take place. 
Furthermore, a new rule set must be adjusted for each culture (e.g., in Japan, anger emotions should 
not be displayed in social contexts (Kitayama, Markus, & Kurokawa, 2000)). 



	  

 

Figure 1 Main concept behind statistical emotion development. The 
robot takes the place of the infant, and emotional associations are form 
as a result of a caregiver’s interactions in situ. (Mother and Daughter by 
Ian Grove-Stephensen https://flic.kr/p/56bERd under CC BY 2.0) 

 

A developmental paradigm suggests that a learning entity could develop emotions on its own 
– emotional expression, recognition, triggering events, and so on – if exposed to the right 
environment. This is related to the concept of epigenetics, which describes mechanisms by which the 
environment can program “enduring effects on gene expression and cellular function” (Meaney & 
Ferguson-Smith, 2010). The relatively new field of “epigenetic robotics”, also called “developmental 
robotics”, has been developed in the last decade under this framework (Asada, et al., 2009). It is likely 
that the latest social, humanoid forms of robots such as Affetto (Ishihara, Yoshikawa, & Asada, 2011) 
and NAOi were key to this revolution.  

To date, only two previous studies have used the developmental paradigm to ground artificial 
agent’s emotional expressions. In the first study of its kind, Watanabe et al. proposed the “intuitive 
paradigm”, in which the parents mimicked a virtual infant’s facial expression, to associate the facial 
expressions with the robot’s internal state (Watanabe, Ogino, & Asada, 2007). The authors used the 
concept of Hebbian learning, to create associative links for later emotion recognition. Boucenna’s 
study followed a similar strategy, using a physical robot (Boucenna, Gaussier, Andry, & Hafemeister, 
2010). These are landmark works using the caregiver paradigm to link external emotional stimuli to 
expression, yet some major conceptual challenges still remain. In particular, since the era of 
Breazeal’s emotional robot Kismet (Breazeal, 2004), the definition of robot “feeling” has never been 
tackled. 

In this chapter we discuss a new emotion system called MEI, as an example study for what 
could be created under the social constructivist theory of emotion in the developmental robotics field. 
We will first suggest some pre-requisites: the statistical learning system architecture (brain), the 
physical condition of the robot (gut feeling) and learning process (environment). Importantly, we will 
define the concept of robot feeling. We then will describe the system in action – learning through 
interaction with caregivers in a naturalistic scenario. By inspecting the resulting models (“looking into 
the brain”) and performing vocal recognition and expression tests, we suggest that MEI has achieved 
differentiated emotion representations and developed a basic form of emotional intelligence called 
“core affect”. 

 

 
	    



	  

2 General Overview 
How do infant emotions develop into adult emotions? We propose that motherese interactions 

like the one in Figure 1 may serve as the basis of acquisition of emotion. Motherese is “baby talk” 
between a caregiver and infant at close proximity (Fernald, 1989). This exaggerated speech typically 
co-occurs with exaggerated facial displays (Soken & Pick, 1992), and is known to exist in all cultures 
of the world (Fernald, Taeschner, Dunn, Papousek, de Boysson-Bardies, & Fukui, 1989). It has been 
established that the highly exaggerated form of speech is used to aid the child in the acquisition of 
language (Kuhl, 2004). Furthermore, studies comparing adult-directed emotional speech with 
motherese show that motherese is also highly correlated with emotional speech, with robust 
differences across the emotions (Trainor, Austin, & Desjardins, 2000). As such, a recent review has 
suggested that motherese may exist for the development of emotions (Saint-Georges, et al., 2013). 
The universal social phenomenon of motherese therefore serves as the basis for our emotion 
development work.  

2.1 Issues 
The goal in developmental robotics is to make a robot that learns just as a child does. Yet this 

is an enormous task, to say the least. To encourage others in the developmental robotics or social 
constructivist paradigm to better formalize their individual contributions, we propose the following 
method of formalizing their assumptions and contribution.  

In a developmental robotics study, one should specify which elements are assumed to be 
“innate”, and which are learned through environment. One way to specify this is by grouping them 
into Before (innate and previously learned), During Learning (environment) and After (the learned 
result). Another way to specify starting capacities is to approximate the robot’s “starting age” – to 
what human period do we assume the robot has already “grown”, and what milestones has it already 
reached? After the interaction, what new milestone or developmental age has it achieved? Finally, it is 
useful to define the human functional equivalents for each component of the system architecture. We 
illustrate this formalization method with such an overview for our system. 

3 Overview of solution 
We provide the following outline to clarify the goals of the present study, in which the robot 

develops core affect: “Core affect is a neurophysiological state that underlies simply feeling good or 
bad, drowsy or energised. Psychological construction is not one process but an umbrella term for the 
various processes that produce:  

a. a particular emotional episode’s ‘‘components’’ (such as facial movement, vocal 
tone, peripheral nervous system change, appraisal, attribution, behaviour, subjective 
experience, and emotion regulation);  

b. associations among the components; and  

c. the categorisation of the pattern of components as a specific emotion.” (Russell, 
2009, p. 1259) 

In particular, we focus on (a) the components of vocal tone, movement and subjective 
experience/feeling (b) associations among these components and (c) categorization of the pattern of 
components as a specific emotion. In the present study, we look especially at the first emotions 
observed in the infant: happiness and sadness (Sigelman & Rider, 2010). 

 

3.1 Before Interaction – System Requirements (Neonate) 
We begin with several basic “innate” requirements for our robot system, those with functional 
parallels in a newborn infant. 

 



	  

 Requirements Human equivalent Robot equivalent Age developed 

1 A statistical learning neural 
system.  

Brain CPU, storage, 
machine learning 
program. More 
details on the 
learning system in 
Sec. 4.1. 

At birth 

2 A somatosensory system Sensory system for 
internal functioning 
of gut, viscera, 
temperature, etc. 

Battery level sensor 
and temperature 
sensor (Sec. 4.2). 

At birth 

3 A distress signal when the 
somatosensory system indicates a 
problem. 

Crying to signal 
hunger, cold, etc. 

Auditory distress 
signal (Sec. 4.5). 

At birth 

 

Next, we list the requirements that might be learned simultaneously or prior to the focus of this study, 
for instance within the neonatal stage (less than 4 weeks old). 

 

 Requirements Human 
equivalent 

Robot equivalent Age developed 

4 An extrasensory processing 
system 

Ears, eyes, skin 
and related nervous 
systems 

 

Microphones and 
video camera (touch 
sensors, in the 
future) (Sec. 4.3). 

~6 months 

5 A mirroring system Mirror neurons and 
pre-motor system 

Mirror module (Sec. 
4.4). 

~4 weeks? 

 

We defined two separate sections of “innate assumptions” and “previously learned 
requirements” because (4) and (5) are available, but not fully formed at birth. For example, although 
fetuses have auditory abilities even before birth (Lecanuet & Schaal, 1996), some aspects of hearing 
such as frequency and temporal resolution only reach adult levels at 6 months (Werner, 2002), and 
visual acuity reaches adult levels of 20/20 at 6 months of age (Sokol, 1978). Additionally, we do not 
yet know to what extent the human mirror system is formed and developed at birth (Craig, 2009). It 
has only been established that neonates (< 4 weeks) imitate tongue protrusions (Nagy, Pilling, Orvos, 
& Molnar, 2013). For this reason, we seek parsimony in the abilities placed in the “innate” section.  

Let us illustrate these requirements with an example. Under these assumptions, we can 
imagine then that, for example, a smartphone with a battery level warning beep already has (2) and 
(3), possibly (4). With the right software, it could have (1). Yet, because of its lack of human-like 
embodiment and motor system, the mirroring system in (5) would be a difficult requirement to fulfill. 

3.2 During Training – Environment (Neonate to 6 months old) 
Now, we define the environmental input to which we will expose system with the above 

requirements: motherese. Motherese can be classified into categories, where the vocal tones of the 
caregiver’s speech depend on the communicative intent to the infant (Fernald, 1989), including: 

 

• Comfort: slow, falling pitch contours 



	  

• Approval / Praise: exaggerated rise-fall (bell-shaped) pitch contours 

• Attention bid: quick, rising contours  

• Prohibition: low pitch, high intensity and short 

Infants between birth and 3-months old prefer comfort vocalizations most, according to (Kitamura & 
Lam, 2009), and it is the kind of motherese that caregivers produce most at that age. At 6 months, 
caregivers produce more approval/praise vocalizations, and infants’ preference also shifts to 
approving tones. At 9 months, the preferences shift to directive tones.  

One may wonder if an interactive robot is necessary to elicit motherese vocalizations. 
Wouldn’t laboratory recordings and offline training be sufficient? In fact, it is not so easy – it has 
been shown that mothers are unable to reliably produce motherese in front of a microphone (Fernald 
& Simon, 1984). An infant – or a machine with the look and behavior of an infant – is important in 
eliciting the necessary environmental input (Ishihara, Yoshikawa, & Asada, 2011).   

We propose that these motherese interactions create affective associations as follows. A 
typical caregiver reacts to a distress signal (crying) through comfort motherese. Between birth and 3 
months of age, the co-occuring comfort tones and physical distress create an association between 
sadness-like sounds and a negative physical state. Between 3 and 6 months, a caregiver displays 
approval and praise when the infant is in good health, creating a positive bodily association with 
happiness-like sounds. We posit that the other types of motherese (prohibition, attention) teach infants 
further emotional associations in context, for example, prohibition tones associated with the context 
of being stopped from achieving a goal. 

3.3 After (~6-8 months) 
The final system, after caregiver interaction, should show an increase in core affect emotional 
capabilities: 

• Components: emotional voice, movement, feeling of happiness and sadness 

• Association between components:  

o Feeling to expression. The robot’s subjective feeling of happiness should engender 
vocal tone and movement similar to happiness, and sad feelings should generate sad 
vocal tones and movement.  

o Expression to feeling. The robot should associate happy voices with a positive 
physical feeling, and sad voices with a negative physical feeling.  

• Categorization: Differentiated happiness and sadness in the neural model. 

Now that we have specified the Before, During Training and After phases, we describe the underlying 
system architecture, designed based on functional equivalents in the human brain.  

3.4 Neural Architecture 
In this section, we give details on the neural architecture we build into the robot. The three 

modules we identify, with associated human neural equivalents are as follows, as shown in Figure 2: 

• A mirror system: represents the action of another human, and can induce eventual motor 
imitation (Premotor cortex) (Iacoboni & Dapretto, 2006) 

• A gut feeling module: the module receiving signals of bodily pleasure or pain, e.g. battery 
level or motor heat (Somatosensory cortex) (Damasio A. , 1994) 

• An associative module: associates the outputs of the above – action representation and a 
corresponding bodily feeling of pleasure or pain (Insula) (Craig, 2009) 

 



	  

 

Figure 2: Proposed developmental emotion architecture. The basis of 
an artificial emotion system is in brain areas related to a) embodied 
feelings (somatosensory cortex) b) mirror representations of others 
(premotor cortex), and an associative lookup creating a link between 
them (insula). (Derived from Brain https://flic.kr/p/9UwYi by 
GreenFlame09 under CC BY 2.0) 
 

Let’s briefly examine the three brain areas that are key to defining emotion in our system: 

 3.4.1 The pre-motor cortex 

Mirror neurons in the premotor-cortex been proposed as a critical step towards simulating and 
understanding of the mental states (including emotions) of others. In essence, we map actions of an 
observed person to internal representations of ourselves doing the same action. Simple visual 
observation of an action incites premotor activity in the brain (Rizzolatti & Craighero, 2004). For 
example, watching another grasp an object activates one’s own premotor areas for grasping. Auditory 
input also achieves neural mirroring: neurons in the monkey premotor cortex discharge both when it 
performs an action and when it hears the related sound (Kohler, 2002). 

Damasio called this internal representation an “as-if-body-loop” mechanism for emotion: 
“The brain momentarily creates a set of body maps that does not correspond exactly to the current 
reality of the body.” (Damasio A. R., 2004).  

Therefore, our emotional robot system should include an artificial pre-motor cortex, 
containing an internal representation of the other person’s body state. 

3.4.2 The insula 

The insula has been suggested to lie at the heart of the association between action 
representation and emotion (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003). The insula is a 
region deep in the brain that reads one’s body condition by way of visceral and interoceptive sensors 
(e.g. heat, cold, pain, muscle ache sensors) that send information to the insula.  It has been associated 
with many behaviors such as drug cravings, feeling pain, maternal love, listening to music and 
empathizing with others (Craig, 2009). It is where a bad smell is transformed into disgust (Calder, 
Keane, Manes, Antoun, & Young, 2000) or a caress into pleasure (Morrison, Mjornsdotter, & 
Olausson, 2011), and is active when a mother hears her baby cry (Kim, et al., 2011), or when looking 
at a happy face (Pohl, Anders, Schulte-Ruther, Mathiak, & Kircher, 2013). It is active when 
empathizing for others’ pain as well as when actually feeling pain (Singer, 2004), suggesting that the 
affective component of pain “feeling pain” is decoupled from the sensory component–the pain itself.  



	  

 

Figure 3: Proposed developmental emotion architecture (cont’d). The 
same 3-module architecture, containing an emotion representation in the 
insula, is responsible for both emotion recognition and emotion 
expression. 

To summarize, Damasio and others have suggested that the insula maps visceral states that 
are associated with emotional experience (Damasio A. R., 2004; Craig, 2009; Singer, 2004). Based on 
this evidence, it seems an artificial insula is an integral part of a robot emotion system, to associate 
physical “gut” feelings (Sec. 3.4.3) with emotional body representations (Sec. 3.4.1). 

3.4.3 The somatosensory cortex 

In this section, we attempt to define feelings. Damasio’s Somatic Marker Hypothesis suggests 
that feelings are an association of stimuli to visceral (and musculoskeletal) pleasure or pain: “Feelings 
are […] first and foremost about the body, that they offer us the cognition of our visceral and 
musculoskeletal state. […] Body images give […] a quality of goodness or badness, of pleasure or 
pain.” (Damasio A. , 1994, p. 159) 

In the brain, the somatosensory cortices (from the Greek root soma, meaning body) are 
responsible for sensing this internal state of pleasure or pain. They sense the body’s internal state 
including viscera (e.g. internal organs like the heart, stomach, or lungs) and joint position, as well as 
external senses of touch, temperature and pain. Indeed, when the somatosensory areas are damaged, 
patients do not show normal signs of despair or panic (Damasio A. , 1994)  

In short, the somatosensory cortex contains a “gut feeling” representation of the body’s 
internal state, either flourishing or in distress. We consider that this gut feeling is linked to the 
emotional body representations (Sec. 3.4.1) within the insula (Sec. 3.4.3). And, to quote Damasio, 
“the critical, formative set of stimuli to somatic pairings is, no doubt, acquired in childhood and 
adolescents.” (Damasio A. , 1994, p. 179) 

In Figure 3, we illustrate the tight integration of the above three components. Unlike many 
robotic emotion systems with specialized systems for recognition and expression (e.g. Kismet 
(Breazeal, 2004)), the same system can perform both emotion recognition and expression, as 
illustrated by the two columns in Figure 3. Specifically, it can perform emotion recognition by first 
mirroring the person, then looking up the closest state and associated feeling.  The latest 
neuroscientific models support this: according to “shared-substrates” models of emotion recognition, 
we understand other’s emotions by first making an internal simulation of the other (Heberlein & 
Atkinson, 2009). Secondly, the architecture can perform emotion expression by first feeling a certain 
physical state, then expressing it by looking up the associated expression and preparing to act. 
Interestingly, the premotor cortex is only the preparation to act; possibly, the act of expressing the 
final emotion could be further mediated by the pre-frontal cortex and cognitive controls; for example, 
suppressing a smile in a socially inappropriate situation. 



	  

 

Figure 4: Illustration of the MEI system receiving affective input and 
clustering in the artificial insula to create differentiated classes. 

4 MEI System Implementation 
Based on the evidence presented above, we implemented the following five modules in a robot we 
call MEI – Multimodal Emotional Intelligence, as described in (Lim & Okuno, in press) and (Lim & 
Okuno, in prep.). The system was implemented in the Python programming language on the NAO 
robot, using HARKii real-time audio processing technology, and machine learning algorithms as 
described below. We summarize the system here. 

4.1 Statistical learning neural system (Artificial Insula) 
The purpose of this module is to create associations between the robot’s “gut feelings” (Sec. 

3.4.3) and internal motor representations (Sec. 3.4.1). We use a Gaussian Mixture Model (GMM) 
(Bishop & Nasrabadi, 2006), which is a statistical learning model typically used for clustering and 
recognition, as illustrated in Figure 4. Gaussian Mixture Models are typically trained with large 
amounts of data, and the resulting model represents the data, with peaks around commonly observed 
data, and valleys for uncommon occurrences. 

We chose the GMM to represent emotion clusters for many reasons. Firstly, GMMs are 
widely used in the field of audio and vision recognition. Essentially, a novel input is evaluated in the 
GMM, and the cluster with the highest score provides the recognition result. Secondly, unlike other 
recognition techniques like Support Vector Machines (Burges, 1998) or K-means (Kanungo, Mount, 
Netanyahu, Piatko, Silverman, & Wu, 2002), it can be used for expression. This is because the model 
represents a probability space that can be sampled – data around the “peaks” are more likely to be 
picked for expression, compared to the data in the valleys. Additionally, the samples will be non-
repetitious, which conveniently represents the “noisy” nature of human expression. Finally, a GMM 
can be used for representation. We can inspect the peaks, known as the GMM means, which represent 
a “prototype” for that cluster. 

Let us illustrate the method with an example. If the robot hears a comforting voice that is 1.0 
syllables per second, then another comforting utterance at 1.4 syllables per second, it creates a 
Gaussian cluster that approximates a “prototypical comfort voice” with a mean speed of 1.2 
syllables/sec and standard deviation of 0.2. Consider that the GMM space can represent dimensions 
other than speed, such as pitch range, etc., so the “prototype” can be multi-dimensional. This allows 



	  

the mean to encapsulate not only speed, but also values for pitch, say 40 Hz on average. These other 
dimensions will be discussed in Sec. 4.3. 

In addition, the system automatically splits clusters when the variance (related to standard 
deviation) of a cluster becomes large. We do this by calculating the Bayesian Information Criterion 
(BIC) (Schwarz, 1978) and finding the optimal number of clusters to represent the data (Lim & 
Okuno, in press). For instance, if a sad voice cluster begins to include both high intensity grief voices 
and low intensity comfort voices, the system may create 2 clusters instead of one. In this way, the 
learning module develops and differentiates as it receives more input. 

Interestingly, the functions proposed by our GMM method sounds similar to the 
Differentiation and Dynamical Integration (DDI) of perspective of emotional development proposed 
by developmental psychologist Camras (2011). Our automatic creation of emotional clusters is similar 
to her concept of “attractor states”. Initially, emotions are distinguished into positive or negative 
attractor states, but then further differentiation results in new attractor states corresponding to what we 
often call discrete emotions (e.g., negative affect splits into anger, sadness and fear).   

One practical advantage of the GMM over the DDI model may be that the GMM is highly 
implementable. In experiments, we use the implementation from Scikit-learn machine learning library 
(Pedregosa, et al., 2011) written in the Python programming language, along with our own 
modifications for splitting clusters based on BIC scores. Details are available in (Lim & Okuno, in 
press). 

 

4.2 Somatosensory system (artificial somatosensory cortex) 
The purpose of this module is to represent the robot’s internal “gut” feelings. Feelings are an 

integral part of an emotion system, yet to our knowledge, no other artificial emotion system has 
attempted to include it. For instance, the difficulty may stem from the preconception that feelings are 
an abstract concept. In fact, our definition of feelings is intrinsically linked to the fact that a robot has 
a body in the physical world. 

We define the robot’s feeling based on Damasio’s idea of “flourishing” and “distress” 
(Damasio A. , 1994). This simple module checks for physical homeostasis in the robot:  

• Gut feeling is set to flourishing if the robot’s body is in homeostasis, i.e., the temperature of 
the joint motors is not too hot and not too cold, and if the battery percentage is over a certain 
value  

• Otherwise, the gut feeling is set to distress if the robot is out of homeostasis, e.g., an arm 
motor is too hot 

In experiments, the above was implemented using the NAO robot’s Naoqi interface to the 
battery and arm temperature sensors.  

4.3 Extrasensory processing system 
The purpose of this module is to process and simplify the environmental information. In our 

current work, we process incoming information according to the SIRE model, as explained in (Lim, 
Ogata, & Okuno, 2012). In short, the SIRE model is a way to reduce complex signals such as voice, 
movement and music into a simple set of features. SIRE stands for Speed, Intensity, Regularity and 
Extent. For example, when processing speech signals, we can extract an utterance’s speech rate, say, 
2.0 syllables per second, and normalize it to fast (1.0), slow or stopped (0.0), or somewhere in 
between (between 0.0 and 1.0). This is also known as the utterance’s Speed. Similarly, the concept of 
Speed within an arm s also exists: velocity. In the SIRE paradigm, each of speed, intensity, regularity 
and extent is represented as a value between 0 and 1, as follows: 

• Speed: slow (S=0.0) vs. fast (S=1.0) 

• Intensity: gradual (I=0.0) vs. abrupt (I=1.0) 



	  

• Regularity: rough (R=0.0) vs. smooth (R=1.0) 

• Extent: small (E=0.0) vs. large (E=1.0) 

Explicit mappings are described in (Lim, Ogata, & Okuno, 2012) and (Lim & Okuno, in press). 

The point of representing features in this simplified manner is to use as minimal a 
representation for emotion as possible. For instance, our work has shown that a voice is considered 
sad when it is slow, low intensity, regular, with small pitch range (extent), S=0.1, I=0.4, R=0.7, E=0.4 
(Lim, Ogata, & Okuno, 2012). A voice is perceived as happy when it is fast, not too intense, slightly 
irregular and with a rather large pitch range, S=0.7, I=0.2, R=0.2, E=0.7. Furthermore, gestures that 
followed these patterns of SIRE dynamics were perceived in similar ways. Therefore, we need not 
process and store more information than SIRE to represent these two states, which is preferable to aid 
in visualization and understanding of our models. In this paper we focus on voice and arm 
movements, but in the future we should include other concise feature representations, such as facial 
configurations (eyebrow angle, mouth corner changes) or SIRE based on touch.  

In experiments, the above concepts were implemented using a PlayStation Eye microphone as 
input, and the HARKii real-time audio processing system to extract the SIRE values. 

 

4.4 Mirroring system (artificial pre-motor cortex) 
The mirroring module has two purposes:  

2. To create the robot’s internal “as-if” representation, a simulation of its caregiver  

3. To generate motor output (voice, arm movements) that incites interaction from caregiver.  

Firstly, for (1), the mirroring system creates an internal “as-if” representation of its 
environment. The representation is essentially four numbers, representing SIRE. For example, if the 
caregiver speaks with slow speech, it entrains the robot’s internal representation to also be slow (e.g., 
S=0.1). As shown in Figure 3, the robot first creates an internal “as-if” representation in the pre-motor 
cortex, and this internal “as-if” SIRE representation is used to create emotional clusters (Figure 4).  

Secondly, for (2), motor output is generated via the artificial pre-motor cortex. Just as SIRE 
can be used for analyzing input, it can be used for generating output. For example, if a robot’s output 
SIRE state has S=0.8, means the robot will speak fast, with fast gestures. In (Lim & Okuno, in prep.), 
we defined the formula for entrainment, which is a gradual synchronization of the SIRE dynamics 
between the human’s input and the robot’s output. For example, when the caregiver speaks to the 
robot with slow speech, it entrains the robot’s SIRE motor output to also be slow. The actual output 
depends also on the robot’s current feeling and the robot’s previous SIRE dynamics, however. For 
instance, a robot that is very low on battery will be more difficult to soothe. Details are given in (Lim 
& Okuno, in prep.).) 

Although not yet formally tested, we consider the robot’s motor feedback in (2) as an 
essential part of eliciting realistic motherese from the human. For example, if the caregiver speaks to 
the robot with a happy voice, and the robot returns a similarly happy voice, the caregiver should 
become more aroused. Thus, a positive feedback loop is created. 

In experiments, we implemented the mirror system using Naoqi ALMemory variables, 
Python code to implement the entrainment formula, and mappings from SIRE to the NAO robot’s 
Naoqi interface to motor controls, as described in (Lim, Ogata, & Okuno, 2011). 

 

4.5 Distress signal 
The purpose of this module is to incite interaction from caregiver. The module continuously 

checks the robot’s current gut feeling, and sends a distress signal if the feeling is distress (low battery 
or hot motors). In our experiments, we set the distress signal to mimic an infant’s cry at birth: a high 



	  

intensity sound, with a large pitch range and a very regular timing. In practice, we set the robot’s 
Text-To-Speech (TTS) system to repeat the syllables “ma ma ma” and set SIRE = 0.9 for all four 
parameters.  

In experiments, we used the NAO robot’s Acapelaiii TTS system and markup to modify the 
dynamics of the robot’s voice. 

 

5 Evaluation of the system 
Let us recall our formalization in Section 3.3, in which we defined some ways to evaluate the 

system after interaction with a human. After a caregiver interaction, we hypothesize that the robot 
system should have acquired these three aspects: 

1. Categorization: Differentiated happiness and sadness in the neural model. Ability to 
recognize adult happiness and sadness in the voice. 

2. Expression to feeling. The robot should associate happy voices with a positive physical 
feeling, and sad voices with a negative physical feeling.  

3. Feeling to expression. The robot’s subjective feeling of happiness should engender vocal 
tone and movement similar to happiness. 

 

5.1 Training Conditions 
We recruited 6 fluent English speakers from Western countries (3 female, with a mean age of 

29.8 years old). The participants were introduced to the robot and we asked them to say the robot’s 
name (“Mei Mei”) in two different scenarios, mimicking scenarios that happen in the first 6 months of 
a human infant’s life:  

• Comfort: Mei Mei is crying (SIRE = 0.9). Soothe and comfort her by saying her name. 

• Praise: Mei Mei is no longer crying (SIRE = 0.1). Praise her and make her feel loved by 
saying her name.  

 

 

 

 

 

 

 



	  

 

 

Figure 5: The creation of meaning for negative (above) and positive 
(below) core affect. Similar to how a newborn expresses distress such 
as hunger and cold by crying, the robot emits a high intensity signal 
when in physical distress. The caregiver regulates the expression using 
a comforting voice and face (~3 months in infants). After caregiver 
training, the robot has learned to associate the physical distress with the 
comfort/sadness dynamics. A similar association is made with positive 
physical flourishing state and praise/happiness dynamics. 
 

The process is illustrated in Figure 5. During the comfort condition, the robot’s feeling was 
set to distress, which engendered a vocal distress signal along with arm movements (SIRE = 0.9). 
During the praise condition, the robot moved its arms but did not vocalize, and the robot’s feeling was 
set to flourishing (SIRE = 0.1 for all parameters). At all times, the robot continuously expressed its 
current SIRE state by gesturing with its arms. For example, when it was crying in distress (SIRE = 0.9 
for all parameters), its gestures were initially fast, intense, regular, and large. When it was in a 
flourishing state, its gestures were initially slow, not intense, irregular and small. (SIRE = 0.1 for all 
parameters). 



	  

	  

Figure 6: Trained emotion representations in artificial insula, associated 
with physical distress and physical flourishing. Visualization using only 
two of the four SIRE dimensions–speed and intensity. We can notice the 
clusters for comfort (cluster peaks denoted by ★) are generally slower 
than the clusters for praise.  
 

5.2 Results and discussion 
The interactions resulted in 128 praise utterances and 114 comfort utterances, which were 

used to train the robot’s emotion model.  

Categorization. The resulting model, partially shown in Figure 6, shows differentiation 
between conditions of distress and flourishing. We can already see differentiation in the two 
dimensions of speed and intensity, and further differentiation could be seen if it were possible to 
visualize all four SIRE dimensions. Another way to interpret the model is to plot the Gaussian means 
(the peaks denoted by a star, in Figure 6), where the means represent the 4-dimensional “prototypes”. 
For example, the trained model produces prototypical flourishing-praise values as SIRE=[0.4, 0.5, 
0.5, 0.7], and prototypical distress-comfort SIRE value as SIRE=[0.3, 0.3, 0.5, 0.4] (Lim & Okuno, in 
prep.). This intuitively makes sense, because praise voices have larger pitch ranges than comfort 
voices (praise E=0.7, comfort E=0.4). Further results showing Gaussian mean differentiation of 
attention and prohibition conditions, and their clear similarities to fear and anger voices, can be seen 
in (Lim & Okuno, in prep.). 

Expression to feeling. As we report in (Lim & Okuno, in prep.), the model was able to 
associate 90% of happy vocal utterances with flourishing, and 84% of sad vocal utterances with 
distress. These results came from experiments testing the recognition ability of the motherese-trained 
GMM model, when exposed to 71 “happy” and 62 “sad” adult emotional voices from the German 
dataset Emo-DB (Burkhardt, Paeschke, Rolfes, Sendlmeier, & Weiss, 2005). In other words, happy 
voices induced higher likelihood scores in the “flourishing-praise” cluster than in the “distress-
comfort” cluster. Similarly, sad voices resulted in higher likelihood scores in the “distress-comfort” 
clusters. In (Lim & Okuno, in prep.), we suggest that this is akin to affective empathy or “feeling 
another’s pain”: the robot performs internal mirroring (in this case of vocal dynamics) and makes a 
learned association with physical distress. 

Feeling to expression. It may appear that we have only made a simple model of motherese 
and emotional voices. However, we insist that this model is also generative. In other words, the 
motherese received by the robot affects its own expression.  



	  

Our previous work has shown that our system can reliably express happiness and sadness 
through voice, gesture and gait, given emotional voice training alone (Lim & Okuno, in press). 
Evaluations were performed by 20 participants rating the robot using Mehrabian’s Pleasure-Arousal-
Dominance (PAD) scale (Mehrabian, 1995), following similar perceptual experiments in (Lim, Ogata, 
& Okuno, 2012). Perception experiments for the motherese-trained system described here are still 
underway, and we expect a similar result. 

Intuitively, this reflects the idea that the caregiver’s own emotional expressions are 
“transmitted” to their infant. Among humans, infants of depressed mothers continue to show 
depressed behaviors to other adults (Field, et al., 1988). Furthermore, early negative maternal 
parenting styles predicted greater increases in negative behaviors of the child later in life (Calkins, 
2002).  

Finally, our developmental robot system could explain Ekman and Friesen’s “display rules” 
in a statistical manner. Our theory could explain why “feeling good” is associated with high arousal in 
Western cultures, and low arousal in Eastern Cultures: the parents simply entrained the flourishing 
states to different levels. Training the robot with an Eastern and Western caregiver and inspecting the 
cluster means could verify this statistical differentiation. Additionally, it is known that American 
motherese contains more extreme pitch modifications than British motherese (Shute & Wheldall, 
1989). We could “raise” the robot with caregivers from two different cultures, and check whether the 
resulting expressive robot could be perceived as coming from one culture or another. 

6 Future Trends 
The developmental paradigm to the construction of artificial emotion systems creates very 

promising new areas of research.  

Firstly, the practical applications are wide. Consider the development of robot personality, 
using these flexible definitions of emotion as a basis. We could imagine a robot that could adapt to the 
personality or emotional style of its family: very expressive and outgoing, or quiet and reserved. A 
robot could express happiness in a way that is consistent with its surroundings, possibly increasing 
user acceptance. Or, a system could simply improve its emotion recognition accuracy through 
interaction with the users – just as we may understand a good friend’s true feelings (even when they 
try to hide it), the system could adapt its definition of emotion by linking together person-specific 
facial features, vocal features, and context.  

Secondly, the developmental paradigm may answer the question: what is robot love? This 
question has captured the interest of the media, films, and pop culture, and is certainly a valid 
question for the topic of this book. Consider the GMM link between humans, emotion states, and a 
robot’s physical “gut feelings”. If a robot continues to associate physical flourishing with not only 
emotional features, but also physical features (like a caregiver’s face), it could develop attachment. 
This is a fascinating idea that suggests that robot companions could be “loving” agents. For instance, 
a caregiver’s presence could make the robot “happy”, associate it with “full battery”, and its presence 
would therefore be akin to repowering itself at a charging station, like the idea that a loved one re-
energizes us. As Daniel Dennett supposed when pressed with the question: “In principle, you can 
make a computer that loved right out of the box, but only because it was a near-duplicate of a 
computer that had a life, that had love. There’s probably no shortcut.” (So, 2013) 

Thirdly, we should talk about empathy and its links to moral machines. Affective empathy is 
the idea that, through emotional contagion, we feel others’ pain even out of our conscious control. It 
has links to morality (de Waal, 2013), and Baron-Cohen suggests that personality disorders such as 
psychopathy and narcissism are linked to a lack of affective empathy (Baron-Cohen, 1996). Since 
robot morality and ethics is a debated topic, it is possible that a system like MEI could serve as a 
platform for affective empathy – a building block for robots to develop morality outside of a rule 
system (Wallach & Allen, 2010). 

Fourthly, we can consider more research in the extension of the MEI system to other 
modalities and emotions. Touch is an important method of communication with infants, and even 



	  

animals: as noted by one of our participants, “I wanted to comfort the robot by touching him – that’s 
how I communicate with my dog.” Of course, facial expressions are also extremely important. While 
considered in our paradigm (Figure 4), they have not yet been tested since our NAO robot did not 
have a moveable face. Further research with very human-like robots such as Affetto is an obvious 
next step. In terms of other emotions, we have touched only briefly on other emotions such as fear and 
anger. Many emotion classification methods treat happiness, sadness, anger and fear at the same level. 
But it is known that anger requires higher cognitive mental processing (Fellous & Arbib, 2005). 
Therefore, emotion modeling in a scaffolded hierarchy could also be explored.  

Finally, emotion, thought to be one of the first capacities built by a child, should benefit the 
field of artificial intelligence and epigenetic robots greatly. The constructional link between the 
physical body, mental states and preference could be used as a scaffold for learning. For example, 
consider the concept within artificial intelligence called symbol grounding. Words and concepts are 
typically grounded in visual features like “the apple is round and red”. Yet when we look at an object, 
we also have an associated feeling–“good” or “bad”–stemming from outside of consciousness, e.g., 
“the apple is delicious and I like it”. This feeling could be fundamental in constructing meaning. 
Therefore, our artificial emotion system and “gut feeling” definition could be key to grounding A.I. 
and understanding. 

7 Conclusion 
In this chapter we explored the epigentic robotics paradigm for developing artificial emotions. 

We suggested how emotions could be constructed through environment, given some initial “innate” 
assumptions about the system and a human-like interaction called motherese. Importantly, for the first 
time, we described experiments with a robot that developed feelings: physical flourishing or distress 
grounded in battery levels and motor temperatures. Towards robot emotions that are flexible, culture-
specific, and grounded in the physical world, with the potential to be empathetic and moral machines, 
developmental robotics paradigm is an exciting approach for the future of artificial emotion systems. 
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Key Terms and Definitions 
• Bayesian Information Criterion (BIC): A criterion for selecting the best model given a 

dataset. It penalizes models that use too many variables to explain the data (overfitting). A 
lower BIC implies 1) a better fit, and/or 2) fewer explanatory variables. 

• Developmental Robotics or Epigenetic Robotics: A relatively new scientific field that aims 
to study the developmental mechanisms and architectures for lifelong learning in machines. 
Typically it involves formalizing, validating and extending models from neuroscience, 
developmental psychology, and evolutionary biology, specifically by attempting to 
implement the models in robots. Results are expected to feedback into existing theories, or 
produce novel theories about human and animal development. 

• Entrainment: The synchronization of organism to a rhythm usually produced by another 
social actor. Humans can entrain to the beat, for instance, by dancing or tapping their foot, 
and fireflies are also known to flash in synchrony. In this chapter, we refer to the entrainment 
in speed, intensity, regularity and extent between the voices and movements of two agents.  

• Gaussian Mixture Model (GMM): A probabilistic model used to represent data as a mixture 
of normal distributions. It is commonly used for unsupervised learning and clustering, which 
means that clusters can be created without labels. It is similar to k-means clustering, except 
that when used for recognition, it outputs the probability that a new data point belongs to a 
cluster, not a binary value. 

• (Gut or Physical) Feeling: The state of physical flourishing (homeostasis) or distress (out of 
homeostasis) in an individual.  

• Motherese: A simplified type of speech spontaneously spoken by caregivers to infants. 
Typically it contains exaggerated intonation and rhythm, a higher pitch, and more pronounced 
variations compared to normal speech. Also known as baby talk or infant-directed speech 
(IDS). 

• Multimodal Emotional Intelligence (MEI): A robot system with the ability to understand, 
represent and express emotions in multiple modalities, such as voice, movement, gait or 
music. 

• SIRE Paradigm: A paradigm using speed, intensity, regularity and extent (SIRE) to 
represent an emotion across modalities. For instance, sadness has been linked to slow, low 
intensity, regular and small dynamics in movement, as well as in voice and music. 

• Social constructivist theory: A theory that an individual’s learning is constructed through 
interaction with others in a group. It suggests that cognitive development is influenced by 
culture and social context. 

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
i	  http://www.aldebaran.com	  
ii	  http://www.hark.jp	  
iii	  http://www.acapela-‐group.com	  


