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The MEI Robot: Towards Using Motherese to
Develop Multimodal Emotional Intelligence

Angelica Lim, Student Member, IEEE, and Hiroshi G. Okuno, Fellow, IEEE

Abstract—We introduce the first steps in a developmental robot
called MEI (multimodal emotional intelligence), a robot that can
understand and express emotions in voice, gesture and gait using a
controller trained only on voice. Whereas it is known that humans
can perceive affect in voice, movement, music and even as little as
point light displays, it is not clear how humans develop this skill. Is
it innate? If not, how does this emotional intelligence develop in in-
fants? TheMEI robot develops these skills through vocal input and
perceptual mapping of vocal features to other modalities. We base
MEI’s development on the idea that motherese is used as a way to
associate dynamic vocal contours to facial emotion from an early
age. MEI uses these dynamic contours to both understand and
express multimodal emotions using a unified model called SIRE
(Speed, Intensity, irRegularity, and Extent). Offline experiments
with MEI support its cross-modal generalization ability: a model
trained with voice data can recognize happiness, sadness, and fear
in a completely different modality—human gait. User evaluations
of the MEI robot speaking, gesturing and walking show that it can
reliably express multimodal happiness and sadness using only the
voice-trained model as a basis.

Index Terms—Cross-modal recognition, emotion recognition,
gait, gaussian mixture, gesture, motherese, SIRE, voice.

I. INTRODUCTION

E MOTIONS can be conveyed in many ways outside of fa-
cial expression. Consider the sympathy we feel for a quiv-

ering puppy—he looks scared, we might say. Or the shouts of
neighbors fighting in a foreign language; they can still sound
angry even without knowing what they are saying. Even a singer
on stage can belt out a tune with such emotional intensity that
listeners are moved to tears. It is a curious phenomenon: how
can mere movements or sounds affect us in this way? This kind
of “emotional intelligence”—to sense emotions through various
means—appears to be built into any normal-functioning human
and even some animals. We propose that robots, too, can de-
velop the ability to understand emotions, no matter the com-
munication channel. But first we must investigate how we as
humans develop this ability, whether the channel is movement,
voice, or any other type of sound.
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First, consider that any movement can be colored with emo-
tion. In the 1980’s, the neurologist Manfred Clynes performed
extensive cross-cultural studies using his sentograph, a device
to measure touch [16]. He asked subjects to tap the device at
regular intervals while imagining emotions such as love, hate,
and grief. The resulting dynamic forms of the movements ap-
pear similar across cultures, e.g., abrupt, jabbing movements for
hate, and soft, lethargic taps for sadness.More recently, psychol-
ogists show the importance of movement by attaching balls of
light to actors’ joints, turning off the lights, and recording these
so-called ‘point-light’ displays. Actors in [57] made “drinking
and knocking” movements in 10 different emotions, and despite
the impoverished format, raters could still recognize emotional
information. Walking style, or gait, can also reveal the walker’s
emotional state [49], [59]. For instance, heavyfootedness can
signify anger, and slow walking speed can signify grief. For a
given emotion, the dynamics of gesturing and walking already
appear to have underlying similarities.
Another common way we express emotions is through the

voice. In a typical study on emotional voice, researchers ask
actors to utter gibberish words in various emotions. Van Be-
zooijen et al. [76] asked native Dutch speakers to say twee
maanden zwanger (“two months pregnant”) in neutral and nine
other emotions, and then played them to Dutch and Japanese
subjects. Changes in properties like pitch, tempo and loudness
of speech due to physiological changes appear to create univer-
sally perceptible emotional differences [64]. Juslin and Laukka
[29] reviewed dozens of studies of this kind, and found that
hearers can judge anger, fear, happiness, sadness and tenderness
in voice almost as well as facial expressions, around 70%. Emo-
tion in sounds may even stretch to the animal kingdom; among
some animals, alarm calls mimic human fear vocalizations, with
high-pitches and abrupt onset times [69]. In primates, dominant
males often emit threatening vocalizations with characteristics
similar to those of human anger [69].
It has long been speculated that whether it be a step, tone of

voice, or even a musical phrase, the expression of emotions have
the same underlying dynamic “code” [16], [29], [73]. For ex-
ample, both loud, intense voices and large, forceful movements
convey anger. Sadness can be conveyed through small and slow
movements and quiet, slow speech. Indeed, a stomping gait can
indicate fury, and a lethargic walk can portray depression.
In this paper, we address this open question in developmental

robotics: how might a robot develop this multimodal emotional
intelligence (MEI), based on evidence in human development
of emotional intelligence in voice, movement, and even music?
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Fig. 1. Overview of the learning phase of MEI through infant-directed speech. The robot (center) observes, for example, a happy face concurrent with a happy
voice. The speed, intensity, irregularity and extent (SIRE) are then extracted from auditory input. Finally, this SIRE tuple is added to the relevant class model,
strengthening the association between the facial class and vocal dynamics. In our experiments, the face emotion recognition is represented as a class tag, to be
replaced in the future by the output of an FACS engine such as [42] (or other affective groundtruth).

A. The Case for Emotion and Motherese

We propose that emotional voice is learned through associa-
tive learning with emotional face, and that other MEI abilities
scaffold onto these vocal dynamics (see Fig. 1.) Consider the
universal phenomenon of infant-directed (ID) speech, or “moth-
erese.” ID speech is a highly varying style of speaking with con-
tours and properties (e.g., pitch, intensity) also found in exagger-
ated adult-directed (AD) emotional speech: “Acoustic analyses
showed few differences between the ID and AD samples, but
robust differences across the emotions [74].”
In other words, motherese is emotional speech, and it co-oc-

curs with exaggerated emotional facial expressions [70]. For
deaf children, facial expression accompanying emotive signing
is called “visual motherese”:

“Hearing babies know when their parents are happy,
worried, angry, or excited from their voices, even when the
baby cannot see the parent’s face. Your deaf baby needs
to see your facial expression and your body movements
to get the same information. Are you smiling, and letting
your signs flow? Are you frowning and signing sharp,
emphatic signs as you run to cover the electric outlet?
Are you pretending to cry as you see a sad character in a
story?1

Motherese is known to be necessary for social and verbal
development and exists across cultures (e.g., [21] and [34]).

1“My Baby’s Hearing” guide, Boys Town National Research Hospital for
childhood deafness, visual impairment and related communication disorders:
http://www.babyhearing.org/languagelearning/buildconversations/Moth-
erese.asp.

Yet, compared to most studies of ID speech which concentrate
on language acquisition (e.g., [51]), ID speech and its role on
the comprehension of prosody has received little attention [19],
[62]. Soken and Pick [70] suggest an important role played by
motherese for developing the correspondence between the face
and voice:

“It has been shown that infants are attracted by and
attend to motherese, which is characterized by more ex-
aggerated intonation and higher pitch than adult-to-adult
speech. Concurrent with the exaggerated speech of moth-
erese, there are probably exaggerated facial displays,
allowing infants to explore the particular aspects of the
face (e.g., exaggerated mouth and brow movement). [ ]
Child-centered displays may serve as opportunities for
learning about affective events.”

Lewis [37] proposed that young infants selectively
respond to the strong affective character in speech since
prosody is initially more salient than phonetic information
in the development of language. Fernald [19] also notes
that ID speech’s “melodies are characterized not only by
fundamental frequency, but also by intensity or amplitude
envelope, and by temporal structure. For example, expres-
sions of approval such as ‘Good!’ or ‘Clever girl!’ are
typically spoken using exaggerated rise-fall F0 contours
[and] expressions of prohibition or warning such as ‘No!’
or ‘Don’t touch that!’ are spoken with low pitch and high
intensity.” How are these affective expressions processed
by the infant?
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Psychological studies show that development of vocal emo-
tion recognition already occurs within the 1st year of life (see
[25] for a recent review). At 5-months-old, infants look longer
at happy, sad, or angry voices when they co-occur with facial
photos but not with black and white checkerboards. According
to Walker–Andrews [77], this result suggests that, “the pres-
ence of the face acts as a setting for attending to the affective
quality of the voice.” A neurological study using event-related
potentials (ERP) showed that 7-month-olds are able to recog-
nize happiness or anger when they co-occur with the matching
voice, even when all voices are presented asynchronously [26].
At 12-months, the development of recognition of angry voices
appears complete, coinciding with the onset of crawling which
increases access to expressions of anger [11], [25].
When are infants able to generalize emotion to other modal-

ities? Across languages: When listening to an unfamiliar lan-
guage in ID-speech, 5-month-olds already smile more often at
approving voices and show negative affect when listening to
prohibitions [20]. Across voice and movement: At 7-months-
old, babies look longer at affectively concordant point-light dis-
plays [70] of facial movements and voices. In music: whereas
3-month-old infants cannot discriminate between sad and happy
music, 9-month-olds can make the distinction [23]. In between,
at 5 and 7 months, infants showed order bias, for instance being
able to distinguish when sad music was presented before happy,
but not the inverse.
In summary, it is clear that multimodal emotional intelligence

is available within the first year of life [77]—even before the
onset of speech [34]—yet no detailed proposals exist for the
development of these multimodal skills, either in human psy-
chology or robotics. In developmental psychology, [26] and [77]
discuss only the possibility of associative learning between the
affective voice and face. In developmental robotics, the “in-
tuitive parenting” paradigm has been proposed for grounding
emotional face [7], [78], but other modalities have not yet been
examined. We therefore describe here a developmental robot
system with the goal of: 1) advancing computational models
of emotion in both developmental psychology and autonomous
robotics; and 2) using infant development as a clue to develop
a robot with a powerful emotion system.

II. MEI BASED ON THE SIRE MODEL

The aim of the MEI system is to avoid the compartmentaliza-
tion of emotional intelligence. As mentioned in the introduction,
humans have the ability to generalize emotion to new contexts,
yet this remains a major challenge for robots. This is because
current paradigms would typically train a separate model for
each of the cases we imagined: an emotion module to interpret
the movements of the quivering puppy (such a system does not
exist, though many do for human gestures, e.g., [13]), an emo-
tion module for a novel language (e.g., cross-language emotion
recognition [5] is a recent topic), an emotion module for the op-
eratic singer (many emotion recognition systems exist for music
[33], but none exist for singing voice). In fact, twice the number
of these modules is typically implemented: one for recognition
of the above-mentioned cases, and one for their expression. For
example, Kismet, one of the few integrated emotional robot

Fig. 2. SIRE paradigm from [39] for experiments across voice, gesture and
music.

systems, has a voice emotion recognition module that is inde-
pendent from the emotional voice expression module [8]. This
means that emotional voice input, though recognized, will never
improve the way the robot’s own emotions are expressed.
Unfortunately, this multiplication of specialized systems is

not scalable for an autonomous robot. Therefore, we seek an in-
tegrated emotion system with the following requirements: 1) a
low-dimensional emotion representation; 2) for multiple modal-
ities; and 3) for analysis and synthesis. A model that fulfills
these requirements remains an open problem according to a re-
cent review of affect models [27]. To address this challenge, the
MEI system uses a: 1) 4-dimensional; 2) cross-modal SIRE [38]
emotion paradigm, coupled with a statistical Gaussian Mixture
Model (GMM); 3) capable of both recognition and expression.
The SIRE paradigm has shown promise in finding emotion

“universals” across voice, movement, and music [39] (see
Fig. 2). This was tested by mapping low-level features to
high-level perceptual features, such as those in Table I. SIRE
stands for Speed, Intensity, irRegularity, and Extent [39], [40]
where the tuple contains four values on [0,1].
By extracting the dynamics from a voice and mapping it to a
gesture, [38] found that, for instance, an expression of sadness
is slow with low intensity, whether expressed in voice, gesture
or music. Fear is fast, intense and irregular. A recent study in
psychology supports these findings: in Sievers et al.’s bouncing
ball experiment, emotion dynamics in an animated ball mir-
rored those in music, even across cultures [68].
While SIRE has been tested for particular values of speed,

intensity, irregularity and extent, it remains to be seen if the
same results emerge with a large number of training samples,
for example to account for the many different expressions of
sadness. To address this statistical learning problem, we turn
to modeling using probabilistic Gaussian Mixtures in the 4-D
SIRE space.
The MEI module is composed of four GMM’s in SIRE space,

one representing each basic emotion (see Fig. 3). For each emo-
tion class of happiness, sadness, anger and fear, we define an
-mixture Gaussian in 4D SIRE space

(1)

where is a vector of SIRE tuples corresponding to the class
C, and is the optimal number of components to minimize
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TABLE I
SIRE PARAMETERS AND ASSOCIATED EMOTIONAL FEATURES FOR VOICE, GESTURE AND MUSIC BASED ON A LITERATURE SURVEY IN [39]

Fig. 3. Present system performs cross-modal recognition and expression based
on a GMM representation. In Experiment 1, we test how well the model trained
with emotional voice can recognize emotional gait. In Experiment 2, we use the
model to generate emotional voice, gait and gesture.

the Bayesian information criterion (BIC) over [66]. The
above four emotion classes are the focus of the present study
for two reasons. First, we study emotions verified in infants less
than one year old [25]. At this point in development, infants do
not yet have the notion of self and therefore the capacity for
complex emotions such as embarrassment, pride, or guilt [36].
Second, we choose these emotions because they are the most
commonly studied across our target modalities; it is relatively
rare to find, for instance, music conveying disgust or surprise
[29].
The Gaussian mixture model is selected for affect modeling

because it proposes several advantages. First and most impor-
tantly, the GMM, as opposed to support vector machines [9],
K-means [30], or linear regression models [6], can be used for
both recognition and expression. For instance, a GMM trained
on sad SIRE tuples can give the likelihood that a new, observed
movement looks sad (Experiment 1 of this paper). And, a
GMM trained on happy SIRE tuples can be sampled when
the robot wishes to express joy (Experiment 2 of this paper),
while avoiding repetitious values. Secondly, a GMM provides
interpretability. Like prototype methods [71], we can inspect
the means of the GMM to find the most prototypical set of pa-
rameters. For example, we can check whether the trained “fear”

GMM components correspond to the anxious or terror fear
found in psychology (as we shall see in Section VII). Or, we can
see exactly how one emotion might different from another by
comparing their means (e.g., elation differing from terror along
the extent–but not speed–dimension.) Finally, having a GMM
score for each emotion allows us to know relative emotional
content. For instance, if an energetic vocal emotion sounds
both happy and angry, the model should output high scores
for these two emotions, and lower scores for sadness and fear.
This could eventually be useful if the system is combined with
another detector [e.g., a facial action coding system (FACS)
detector [42] or contextual information] which could further
differentiate between the top confusions.

III. TRAINING MEI

An overview of the training of the MEI module is given in
Fig. 1. From emotional speech input, SIRE parameters are ex-
tracted and taken in conjunction with an emotional tag. These
samples are used as training data for MEI.
In detail, we train MEI’s happiness, sadness, anger and fear

SIRE emotion models using three steps.
1) Low-level feature extraction. We select and extract low-
level, modality-specific features representing Speed, Inten-
sity, irRegularity, and Extent (SIRE). For example, speech
rate in syllables per second is an indicator of speed in
speech.

2) Mapping samples to SIRE space. We normalize each
sample’s four low-level features to [0,1] based on an in-
dividual’s mean and standard deviation. This takes into ac-
count that individuals may have varying speaking styles,
for example.

3) Training the models in SIRE space using expectation-
maximization.

A. Low-Level Feature Extraction

In the SIRE paradigm, we select features that may perceptu-
ally be mapped to speed, intensity, irregularity and extent. These
are dynamic features that are found as principal characteristics
in emotion studies across voice [17], [22], music [47], [43], and
motion [1], [55], [12]. For the purposes of this experiment, we
selected the features in Table II to map voice and gait to SIRE
parameters. In general, the maximum is selected because it has
been shown to be highly relevant (more so than mean) in a
cross-lingual recognition task [58]. We also examine samples
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TABLE II
LOW-LEVEL FEATURE TO SIRE MAPPINGS

with a maximum length of 15 seconds, to roughly parallel the
length of short-term memory [56].
We use the Snack Toolkit2 to extract the following features

from a given recorded utterance. In future work, we plan to use
the HARK robot audition system [50] for online extraction of
features.
Speed: The number of syllables per second is calculated as

the number of syllables divided by the number of seconds from
the beginning to the end of an utterance’s voiced segment.
Intensity: The intensity is the change in power (volume) in

the voiced segment of the entire utterance, defined as maximum
power subtracted by the minimum power (in dB).
Irregularity: This is defined as the utterance’s average high

frequency energy content (5–8 kHz) during the voiced seg-
ments, normalized frame-wise by power.
Extent: This is the utterance’s pitch range, defined as the ut-

terance’s maximum F0 subtracted by the utterance’s minimum
F0.
We do not claim that these mappings are the optimal set, but

rather show examples of sensory-specific mappings for these
high-level perceptual features.

B. Mapping Samples to SIRE Space

How do we map real-world values to [0,1]? Our general idea
is to take into account individual differences, so that any person
(e.g. older or younger people, or generally fast or slow speakers)
can still contribute to the emotion model. In this work, we used
a very simple mapping method based on an individual’s mean
and variance, as described below. Nonlinear methods such as a
logistic sigmoid function are likely more appropriate, however,
and should be used in future work.
In this paper, we transform a datapoint by calculating its

Z-score (standard score) relative to the mean and variance over
an individual’s dataset . Since Z-scores fall between [-1,1]
(i.e., a positive Z-score means the sample is greater than the
dataset average, and a negative Z-score indicates the sample
is less than the dataset average) the Z-scores are then shifted
and scaled to [0,1]. Values less than or greater than are
assigned to 0 and 1, respectively. Specifically

if
if
otherwise,

(2)

2http://www.speech.kth.se/snack/

Fig. 4. Example of the system selecting a 1-component GMM to model the
happiness dataset of the Berlin database used in Experiment 1.

where and are the mean and variance of the
speech rates for that individual. This transformation is defined
in the same way for Intensity, Irregularity and Extent (see
examples of usage in Fig. 3). In this way, we can ensure that
“fast speech” ( ) in a happiness sample, for example,
is “fast” relative to that person’s average speech rate, not an
absolute definition of “fast.”

C. Training

The above mapping procedure results in a multispeaker
dataset which contain SIRE values for an emotion class
(labeled a priori). We use this to train the corresponding

GMM using expectation maximiza-
tion [18]. In our experiments, the SciKit Learn Toolkit [54]
is used to model and train each GMM, where the number of
components is automatically selected by using the model with
the lowest BIC score over a maximum of 10 components (see
Fig. 4).

IV. RECOGNIZING EMOTIONS WITH MEI

We now describe how we can use MEI’s voice-trained model
to recognize emotion in a modality different from voice: human
gait. We limit the scope to gait in this first attempt, but future
work could be examined in two ways: 1) online perception; and
2) dynamics in other modalities such as gestures, music, facial
features, and others suggested in [39].

A. Gait Feature Extraction

Gait studies such as [32], [59] analyze data from multiple
participants walking in various emotional styles. They may take
into account walker’s posture, arm swing, speed, and may use
measurement instruments such as force pads, motion capture,
or a combination of both: Montepare [49] and Janssen [28]
considered the force of the steps, and Unuma et al. [75] took
into account step-length and hip position. Montepare [48] also
found correlations between emotions and perceptual cues such
as smooth-jerky, stiff-loose, expanded-contracted, and so on.
Many cues have been found to be linked to emotion, and we
attempt to extract the simplest, most important features.
To extract SIRE parameters, we consider the positions of feet

through time. Our current study uses the Body Movement Li-
brary [44], which contains emotional walking by nonprofes-
sionals, in neutral, happy, sad, angry, and a few samples of
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Fig. 5. Examples of gait analysis. The horizontal line indicates the threshold for
peak-picking (mean value). For sad gaits, the step lengths (interfoot distances)
are shorter, and foot acceleration is lower.

afraid. We use the data points of the ankle joints in , , space,
where is the vertical axis.
Speed. We calculate speed in steps per minute. We subtract

the position of one foot from the other in the horizontal ( )
plane. We then perform peak picking (using average foot dis-
tance as the threshold, as in Fig. 5), assuming that feet are at their
maximum horizontal distance when stepping. The centroids of
these peaks determine the time of each step.
Intensity. We calculate the maximum acceleration achieved

in the sample in , , space. In a real-time situation, this may
need to be used in conjunction with a sliding window. Intu-
itively, intensity corresponds to the “heavy-footedness” of the
steps. In [4]’s emotion recognition approach for knockingmove-
ments, average acceleration was used. It’s not clear whether one
formulation over the other offers any advantage.
Irregularity. Step timing variance is calculated as the stan-

dard deviation in the step lengths, in seconds. For instance,
walking with a “regular” pace may give a different impression
compared to an “irregular” pacing which stops and starts.
Extent. This is the maximum step length in , space.

B. Mapping to SIRE Space and Personalization

After the features are extracted, the next step of mapping the
features to SIRE space is performed identically to the procedure
in III-B, using the new mean and standard deviations in the gait
dataset.

Fig. 6. Overview of how MEI can perform recognition. The SIRE perception
module extracts S,I,R,E parameters through audio or video, and evaluates the
SIRE tuple to find the most likely emotion being portrayed. In the present exper-
iment, we use offline data from motion capture, but in previous work a Kinect
has been used to perceive emotional motion [39].

Fig. 7. Overview of how MEI is used to generate emotionally colored speech
and movements on the robot. The desired emotional state is used to select the
relevant class model, which is then sampled to generate a SIRE tuple. The tuple
is used to modify the speed, intensity, irregularity, and extent of existing utter-
ances and movements.

C. Recognizing Emotion in Gait

The emotion class of a given input SIRE vector can be
found simply by evaluating the sample in the Gaussian Mixture

for each of the classes , and selecting
the class producing the maximum probability (see Fig. 6).

V. GENERATING EMOTIONAL EXPRESSION USING MEI

It is straightforward to generate an emotional expression
using MEI’s SIRE Model (see Fig. 7). We first generate a SIRE
tuple for a given emotion, then perform the mapping from the
SIRE to the desired modalities. Generating emotional gesture
from SIRE parameters has been explored in [39]. Here, we
modulate the speech, gesture and gait on the NAO model robot
from Aldebaran Robotics3 (see Fig. 7).

3http://www.aldebaran-robotics.com
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Fig. 8. Comparison of voice and gait means of GMMs trained with the full voice dataset ( samples per emotion) and full gait dataset ( samples per
emotion). Red and blue lines correspond to the two 4-dimensional components per GMM, which were fixed at 2-components for visualization purposes. We can
notice the similarity across voice and gait, with the exception of fear. This illustrates that the voice database likely contains “terror” fear samples, and the gait
database primarily “anxious” fear samples [2].

A. MEI: Generating A SIRE Tuple

Given a desired emotion class , we generate a SIRE
tuple by sampling the appropriate Gaussian mixture

. Note that here we manually set the
robot’s emotion class (happiness, sadness, anger, or fear). How
to automatically decide a “current emotional state” is complex
and outside the scope of this paper. For more information,
see for example [52] on deriving an emotional state based on
cognitive appraisal of the robot’s goals and surroundings. Ad-
ditionally, this method does not allow for sampling an emotion
subcategory (such as anxious fear) directly. This should be
explored in future work.

B. SIRE Modifier: Mapping SIRE to Speech

The MEI robot speaks a string of Japanese syllables with no
perceptible meaning, similar to infant-babbling. This choice
of a human-incomprehensible language allows us to explore
purely prosodic communication without any semantically
charged meaning, similar to the developmental robotics work
by Oudeyer [53]. We use the NAO’s built-in Japanese TTS
to generate an utterance composed of words ,
using Acapela4 markup or the Aldebaran API to change the
utterance’s speed, intensity, irregularity, and extent.
Speed. We map ’s relative speed linearly between 50% and

130% of the default rate.
Intensity. ’s volume is modified by mapping linearly be-

tween 0% and 100% of the maximum volume provided by the
API.
irRegularity. We add pauses of length after every word in
, where is sampled randomly from a normal distribution

with and seconds.

4http://www.acapela-group.com/

Extent.Given a pitch range between 90% and 140% ofNAO’s
base pitch, we augment the pitch linearly by for the first syl-
lable of every word , and set the other syllables to the min-
imum pitch 90%.

C. Mapping SIRE to Gesture

We use the same approach as in [39]. We also adjust the
head of the robot such that Extent is mapped to the head.
is mapped to a downward-gazing head angle, and

mapped to a upward-gazing head angle, with linear interpolation
in between. This follows the general SIRE design principle that
higher values of extent for bodies should correspond to larger
spatial expansion [39].

D. Mapping SIRE to Gait

We adjust parameters in the NAO Motion API, to modify
using SIRE as follows:
Speed. is mapped linearly to step frequency between 5%

and 100% of the maximum speed provided by the API.
Intensity. is mapped linearly to the height of the steps be-

tween 0.5 cm and 4 cm.
irRegularity. We calculate pauses of length , where is

sampled randomly from a normal distribution with and
seconds. The robot checks every 2s if , and if so

stops for seconds.
Extent. is mapped linearly to the length of the steps be-

tween 3 and 8 cm.
It should be noted that automatic arm animations to match the

rate of the walk are automatically added in Aldebaran NAO’s
default gait; these were not modified, with one exception. Hands
were mapped in a similar manner to the head, with smaller
values of corresponding to a closed hand, and larger values
of for an open hand.
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TABLE III
CROSS-MODAL RECOGNITION (BASELINE): RECOGNITION OF EMOTIONAL
GAIT INPUT. A 4-CLASS MEI CLASSIFIER WAS TRAINED WITH RAW VOICE

FEATURES AND TESTED RAW GAIT FEATURES (ACCURACY: 25%)

VI. EXPERIMENT 1: CROSS-MODAL EMOTION RECOGNITION

A. Purpose

Cross-language emotion recognition has been explored
with limited success [58] (65%–72% accuracy), but to our
knowledge, cross-modal emotion recognition has never been
performed. In this experiment, we test whether MEI can be
trained with voice and then recognize emotional gait. This
simulates the situation where a robot encounters a modality it
has never seen before.

B. Materials and Procedure

As training data, we used German utterances from 10 subjects
(5 female, 5 male) from the Berlin emotional speech (Emo-DB)
database [10]. This database is suitable because: 1) acted emo-
tional utterances, like ID speech, are known to be more “full-
blown” than everyday speech [10]; and 2) due to Emo-DB’s
widespread availability and use in many emotional voice studies
(e.g., [67]), its use will facilitate follow-up experiments. Up to
ten different sentences in four styles were used: happy (71 sam-
ples), sad (62 samples), angry (127 samples), and fear (69 sam-
ples). For all samples, the recognition rate by German-speaking
adults was at least 80%. We used this data to train MEI’s four
SIRE emotion models as described in Section III.
As test data, we used foot motion capture data from 28 sub-

jects from the Body Movement Library [44]. Each individual
provided two 30 second samples of expressive walking per emo-
tion class, except for fear which had fewer samples. For this ex-
periment, each sample was split into 8 second segments, for a
total of 168 happiness, 168 sadness, 168 anger, and 42 fear sam-
ples. Note that only the ankle joint data was used; leg, body, and
posture data were not used at all.

VII. RESULTS AND DISCUSSION

How well can MEI recognize emotion in a new context: gait?
In Tables III-VI, we show the results of recognizing emotional
gait samples of happiness, sadness, anger and fear. P-values
were calculated using the chi-square test with a null hypothesis
of a uniform distribution over the four categories. As a baseline,
Table III illustrates that cross-modal recognition is not possible
with the standard low-level feature approach: training in one
modality (voice) and testing in another (gait) results in chance
level recognition.
Using our SIRE paradigm, we can see that the overall cross-

modal recognition rate is 63%, without using any data from the
target modality (see Table IV). Happiness, sadness, and fear

TABLE IV
CROSS-MODAL RECOGNITION (OUR METHOD): RECOGNITION OF EMOTIONAL
GAIT INPUT. A 4-CLASS MEI CLASSIFIER WAS TRAINED WITH VOICE

SAMPLES IN SIRE SPACE AND TESTED RAW GAIT SAMPLES IN SIRE SPACE
(ACCURACY: 63%)

TABLE V
INTRA-MODAL RECOGNITION (OUR METHOD): RECOGNITION OF EMOTIONAL
GAIT INPUT. TRAINING AND TESTING IS PERFORMED USING GAIT SAMPLES IN

SIRE SPACE, IN OPEN TESTS (ACCURACY: 75%)

TABLE VI
INTRA-MODAL RECOGNITION (EIGENWALKERS METHOD [31]): RECOGNITION
OF EMOTIONAL GAIT INPUT TRAINED IN 20 DIMENSIONS (ACCURACY: 72%)

were recognized at significant levels, though anger was some-
times confused with happiness (discussed later in this section.)
In fact, training with emotional voice gives almost comparable
results to intramodal training, that is, training and testing with
emotional gait data. As an upper-bound, we compare our cross-
modal result to the recognition rate when gait information is
available: 72% in [31] and 75% here (Tables VI and V). This
suggests that cross-modal recognition can be achieved by first
abstracting data features to a higher-level perceptual space, such
as SIRE.
This result is also comparable to human performance. Con-

sider that human emotion recognition in a new context is also
low: in [65], participants from nine countries and three conti-
nents rated emotional German samples over five emotions. The
recognition accuracy ranged from a maximum of 74% by native
Germans participants, to 52% by Indonesian participants. There
was variability between emotions, too; the Dutch participants
rated, for example, German Joy portrayals with an accuracy of
30%.
Next, we analyze the structure of the voice and gait GMMs,

and give possible explanations for confusions. In Fig. 8, two-
component GMMs are plotted for both voice and gait for ease
of comparison.
In Table IV, we see that fear in gait was not as well recognized

as happiness or sadness. One explanation could be that the voice
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training dataset may have contained almost uniquely “terror”
fear, and the gait dataset mostly “anxious” fear. The dynamics of
these two subtypes of fear have been shown to differ greatly [2].
Indeed, upon comparing the voice means and gait means (see
Fig. 8), it appears that the voice dataset contained fast (terrified)
voices, while the gait dataset contained slow, irregular (anxious)
walks. According to [10], the voice actors were asked not to
whisper when producing fear utterances, whereas whispering
may be necessary to produce “anxious fear” in voice. This sug-
gests that recognition rates may improve by adding samples of
slower, “anxious” voice to our training database.
Next, anger was most often recognized as happiness. Upon

inspection of angry gait misclassifications, MEI consistently
output high probabilities of both anger and happiness. Why con-
fusion with happiness? According to an experiment with human
evaluators of voice data in [2], “elation was relatively often
confused with despair, hot anger, and panic fear, which differ
strongly in quality but are similar in intensity.” Inspection of
Fig. 8 supports this; we can notice that the dynamics of anger
and happiness are relatively similar. How to overcome this con-
fusion must be examined in future work, for example by in-
cluding another modality such as face to overcome the differ-
ence in valence.

VIII. EXPERIMENT 2: CROSS-MODAL EMOTION EXPRESSION

A. Purpose

Our goal is to test whether a robot trained with emotional
voice can express emotions through speaking, gesturing and
walking, as shown in Fig. 7). Expression itself is a particularly
difficult challenge, because the robot: a) does not use an ex-
pressive face (as in [8], [79]); b) does not use any custom emo-
tion animations (such as weeping for sadness) [3]; and c) does
not use hand-defined parameters to control its movement [41].
Importantly, we are also testing whether emotion parameters
learned from voice data could be a basis for expression in mul-
tiple modalities.

B. Materials and Procedure

We first outline the many design considerations for a human
evaluation of emotion, especially in humanoid robots. Firstly,
we must remember that many cues may interfere with emo-
tional expression because the humanoid form is already socially
charged. For instance, a robot speaking happily with a stationary
body can be confusing for observers: a robot with an immobile
head was suggested to look angry (as if staring) in [38]. Sim-
ilarly, looking away can also express embarrassment or social
disinterest, according to gaze studies [14]. Closed hands may
look like angry fists or have other cultural meanings. The ap-
pearance of the robot itself, with an infant-like size or bold color
could implicitly play a role in the perception of personality or
stereotypical emotions. In implementation, motor noise can also
have unintended effects (such as “sad sounds” in [38]) and even
a one second latency could imply negative hesitation. There is a
plethora of cues to consider, so we do our best effort to control
for these parameters; we use a neutral grey-colored instead of or-
ange NAO, omit heavy processing for a real-time response, and
try to use semantically-ambiguous gestures. Secondly, whereas

Fig. 9. Stimulus used in Experiment 2 of robot interacting with human with
various emotions. The robot spoke, gestured, then walked toward the human in
all stimuli.

Fig. 10. Order of presented stimuli for all subjects. The letter in bold cor-
responds to the interaction utterances: K–Konnichiwa, M–Mite, D–Dame,
B–Baibai. The letter in parentheses is the robot’s emotional SIRE modification:
H–Happiness, S–Sadness, A–Anger, and F–Fear.

many studies test emotional expression in a independent con-
text, humans use many cues, including social context, to de-
cide the emotion of a person. For instance, [15] showed that
full-body point-light displays of humans expressing love and
joy were understood when presented in a two person context,
but not when shown alone.
For these reasons, and also due to the fact that the platform is

small and child-like, we design our experiment to evaluate the
MEI and SIRE paradigm using a short but realistic progression
in an adult-child interaction: 1) a greeting, 2) showing a toy,
3) revoking the toy, and 4) saying goodbye. We filmed a woman
speaking in Japanese to a white and grey NAO robot controlled
with MEI (Fig. 9). Four interactions were created:
1) the human said “Konnichiwa” (Hello) while waving at the
robot;

2) the human said “Mite” (Look) and held out a toy;
3) the human said “Dame” (No) and clasped the toy in the
direction away from the robot;

4) the human said “Baibai” (Bye bye) while waving.
The robot responded in SIRE-modified nonsense words with

accompanying gesture as described in Table VII, then walked
toward the human. The gesture contained 2 movements used in
[38], starting with the robot’s hands close together: 1) the hands
moved apart to either side; and 2) one hand moved upwards and
the other moved downwards. As shown in Table VII, for each
interaction, the robot’s speech, gesture and gait were subject to
one of two emotional modifications, depending on the stimuli
(see Fig. 10). The emotional responses were chosen to emulate
typical social responses of a child to the situations. For example,
a child meeting a person may be happy to see them or afraid.
We created a video containing a total of 8 different scenes,

comprised of two sets of the four interactions as shown in
Fig. 10, separated by 2 second black frames, for a total of 2 min
10 s. In the first set of four, we chose a progression of happy
and angry robot emotional reactions to portray an “outgoing”
robot. In the last set of four, we chose the remaining emotions
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TABLE VII
INTERACTIONS BETWEEN HUMAN AND ROBOT, AND SIRE MODIFICATIONS

USED IN EXPERIMENT 2 (JP: JAPANESE LANGUAGE)

TABLE VIII
OUR EXPECTED PAD VALUES FOR HAPPINESS, SADNESS, ANGER AND FEAR
PORTRAYALS IN EXPERIMENT 2, BASED ON EMOTION TERMS PROVIDED IN [46]

of sadness and fear, portraying a “reserved” robot. We chose
to use these logical progressions because pilot trials with a
random order showed that users were perturbed by the robot
showing wildly varying and inconsistent "personalities".
For the experiment, the robot’s MEI module generated the

following SIRE parameters, which we held constant throughout
the experiment:
• happiness: [0.713, 0.552, 0.422, 0.630];
• sadness: [0.112, 0.307, 0.816, 0.195];
• fear: [0.912, 0.465, 0.205, 0.351];
• anger: [0.157, 0.946, 0.198, 0.459].
We recruited 20 Japanese-speaking participants (6 female) to

view the stimulus video and rate the robot’s emotional expres-
sion. The users were given a modified version of the self-assess-
ment manikin (SAM) Measurement Scale for Japanese called
REM [35] to rate the pleasure, arousal and dominance (PAD) of
the robot in each scene [46].
In Table VIII, we show the expected positive/negative PAD

values for the 4 emotion classes used in our study. We used the
table from [46], which provides PAD permutations and associ-
ated emotional tags. For example, we expect that a robot with
happiness SIRE modifications using our MEI should result in
positive P, A, and D values (assuming that “excited, triumphant”
are near adjectives to happiness), and so on. PAD is expected
to be more useful than simple emotion categorization because
PAD can provide both an emotional category and explanation
for that choice. For instance, PAD could be useful to see that an
expression was not recognized because of a missing pleasure
component.
The procedure was as follows:

1) the participant read an introduction of the robot which de-
scribed it as speaking a nonsense language;

2) the participant watched the video once on a laptop with
external speakers, in the order of Fig. 10;

3) the participant watched the video again and chose how they
believed the robot felt during the scene, on each of the PAD
scales. He/she was given as much time as needed after each
scene before proceeding to the next.

C. Results and Discussion

We compare the average ratings for each scene with the ex-
pected PAD result. For happiness, we expect , , rat-
ings, and for sadness, we expect , , . Anger portrayals
are expected to give , , , and fear is expected as ,
, .
According to the ratings shown in Fig. 11, happiness and sad-

ness were well expressed. We find that the portrayals of hap-
piness had , , , (.53,.44,.28) and (.48,.46,.24). Both
portrayals of sadness also were shown to have , , ,
( ) and ( ). Importantly, these
portrayals are not confused with other emotions. For instance,
happiness is not confused with anger nor fear, other emotions
with relatively high dynamics.
Fear, whichMehrabian defines as , , , was not well

captured in our scenarios. The assessments as , ,
show that they were somewhat confused with happiness, with a
positive pleasure component (though not as high as the happi-
ness portrayals). The explanation for this may stem from the
fact that, over all conditions, the robot was shown to be ap-
proaching the human, whereas fear is an avoidance behavior
[60]. Indeed, based on our data analysis in Experiment 1, the
original voice samples appear to contain terror fear, resulting in
MEI-controlled gestures of the robot were fast and jerky, yet the
robot moved at a fast rate (with small steps) toward the human.
Subjective reports are consistent with this: when participants
were told that the target emotion was fear, some stated that the
robot moving towards the object was incongruent. This suggests
that in future work, a “direction” parameter should be added in
an embodied robot situation.
Raters also found difficulty in assessing the angry expres-

sions. Mehrabian defines anger as , , , but partici-
pants rated the expressions as , , , a difference in the
dominance dimension which suggests the raters tended to con-
fuse the anger portrayals as slightly fearful. Whereas anger is
characterized by a high dominance component, the robot was
rated to be slightly submissive ( ). In examining the
SIRE values produced byMEI, the values appear to characterize
irritation (cold anger), i.e., with a low speed and high intensity.
In the future, similar to fear, we may also need to explore either
producing rage (hot anger) towards the person/object, or cold
anger away. Another direction for future work is to notice that
the robot was only slightly submissive-looking, at ,
compared to sadness, which was more submissive at .
It may be interesting to check the effect of a robot’s relative size;
with a robot of equal or larger size to a human, the dominance
dimension may possibly be pushed to , making the robot
look angry using our technique.
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Fig. 11. Results of user evaluations, where , , . Happy and sad emotional expressions conform to expected values
PAD values from [46]. We can also note that fear was perceived to have less dominance than happy, but the pleasure component was not dropped as expected. The
angry and sad dyads were easily distinguished from each other, though dominance in anger was not greater than 0 as expected.

There are limitations to these results. Firstly, Experiment 2
cannot ascertain how much voice, gesture or gait contributed
each to the overall impression of the robot. Ideally, a similar
experiment could be run without speech, gesture or gait respec-
tively, keeping in mind that a lack of speech (silence) may also
convey negative emotions. Theories for how humans and robots
develop the ability to perceive speed, intensity, irregularity and
extent across modalities should also be investigated [72].

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robot named MEI, which could
develop emotional expressions through a universal parent-in-
fant interaction called motherese. By associating an emotional
face ground truth with vocal dynamics, it could develop its
MEI: the ability to recognize and produce emotion in multiple
modalities, such as voice, gesture, gait, or music. Although
very simple, the MEI had three significant characteristics: a
recognition ability, an interpretable model, and an expression
ability. We implemented MEI in an Aldebaran NAO model
robot, and performed two experiments to test our hypothesis.
The first experiment was a cross-modal emotion recognition

task. Our goal was to check whether the voice-trained MEI was
powerful enough to recognize emotion in a completely new
modality. To verify this, we trained the MEI with emotional
voice, and attempted to use the same MEI to recognize emo-
tional gait. We found that it achieved 63% cross-modal recog-
nition accuracy, which is significant compared to the baseline of
25% using raw features, and an upper-bound of 75% intramodal
accuracy. This result was achieved by mapping both modalities

to a common perceptual space called SIRE (speed, intensity, ir-
regularity and extent). It also suggests a promising approach for
the highly sought-after generalization ability in artificial intelli-
gence: by abstracting low-level features to a common high-level
perceptual space, it is possible for a classifier to generalize to a
new context.
The second experiment was an emotion production task. Our

hypothesis was that the voice-trained MEI could also provide a
basis for expressing emotional speech, gesture and gait. To test
this, we asked participants to deduce the emotion of a MEI-con-
trolled NAO robot speaking, gesturing and walking towards a
human. The results show that the robot could reliably portray
expressions of happiness and sadness. For robot fear and anger,
we suggested that an additional parameter–direction away to
show avoidance or approaching–could be added to increase un-
derstanding. This provides a practical result: a data-driven ap-
proach for generating long-term, continuous emotional expres-
sion for robots, without relying on a moveable face, custom an-
imations, or hand-tweaked parameters. Although only verified
here for happiness and sadness, these are perhaps the most im-
portant emotions for a robot to express in a human-robot inter-
action (happiness to cheer up humans, and sadness to express
empathy or remorse for a mistake). In addition, it shows the
effectiveness of integrating controllers for multiple modalities.
The multiplication of specialized systems is not scalable for au-
tonomous robots, and this paper contributes a way to simplify
multiple expression systems into one.
Together, this paper provides a theoretical, scientific result for

emotion learning. It is not clear how humans “develop” emo-
tion expression and recognition, though it is known that there is
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rapid progress in these abilities in the first year of human life.
This paper contributes an explicit theory for robot development
of emotional intelligence through expressive facial and vocal in-
teraction with a caregiver. This is a new idea that should be in-
vestigated for human infant development as well, with possible
implications in autism treatment or other delays in emotion un-
derstanding and expression.
In the future, a promising direction for investigation is inte-

gration with the face or with contextual information. It has been
shown in psychology that, whereas voice provides activation
and is weak for valence [61], face readily provides valence in-
formation. As previously suggested, face information could be
used along with MEI output scores, to distinguish, for example
between confusions of happiness and anger. In terms of expres-
sion, colored eye LEDs or semantically charged words could
contribute to the expressions of anger or fear. It would also be
greatly interesting to test whether visual face information could
be used to further improve or expand the emotional repertoire,
for instance to express complex emotions such as pride or em-
barrassment, or even sarcasm. Furthermore, we could take into
account the context of the motherese interaction, such as the
current goal or internal state. As an example, imagine an infant
being scolded by a parent with an angry voice and angry face. It
has likely had a goal that has been stopped (e.g., reaching for an
electrical outlet). Later in life, a child or adult whose goal has
been thwarted may express that which he has associated with
such a situation: an angry face and an angry voice.
Finally, future work may consider the relation between emo-

tion and language development, as emotion processes appear
before language is acquired. Emotional vocalizations are distin-
guishable in the 5th or 7th month [63]. Yet, only around the age
of three do babies acquire the ability to speak full sentences [34].
A recent literature review by Saint-Georges et al. [62] describes
the nature of motherese and its links to emotion, cognition and
language development: roboticists could use this is a guide for
considering emotional processes as a basis for developing lan-
guage and meaning.
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