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Abstract—In this paper we present a new method for produc-
ing affective motion for humanoid robots. The NAO robot, like
other humanoids, does not possess facial features to convey emo-
tion. Instead, our proposed system generates pose-independent
robot movement using a description of emotion through speed,
intensity, regularity and extent (DESIRE). We show how the
DESIRE framework can link the emotional content of voice and
gesture, without the need for an emotion recognition system. Our
results show that DESIRE movement can be used to effectively
convey at least four emotions with user agreement 60-75%, and
that voices converted to motion through SIRE maintained the
same emotion significantly higher than chance, even across cul-
tures (German to Japanese). Additionally, portrayals recognized
as happiness were rated significantly easier to understand with
motion over voice alone.

I. INTRODUCTION

Robot telepresence has recently become a popular way to
“be in two places at once”. A typical application is office
presence: an employee can control a remote robot, allowing
mobility and video interaction with co-workers far away. These
systems are touted because embodiment of remotely operated
robots provide a “presence” that exceeds communication by
videoconference [1]. Despite its utility in an increasingly
internationalized world, telepresence has been relatively un-
explored for home use, to connect distant family members
(such as the elderly [2]).

Social communication should be the primary focus in a
telepresence application connecting loved ones. One way to
improve social communication is to make a telepresence
system that can convey emotion as clearly as possible; displays
of emotion are known to be important for communication and
social bonding [3] [4]. So far, very few telepresence robots
possess a humanoid form (cf. Telenoid1) and thus cannot
convey emotion through the rich, engaging bond of body
language.

Implementing emotionally-charged telepresence is difficult
because typical approaches “classify” affect. Fellous argues:
“Implementing emotions as ‘states’ fails to capture the way
emotions emerge, wax and wane, and subside.” [5]. Yet most
systems focus on categorizing speech into one of several
emotions. For instance, Kismet [6] classified voice into one of
5 states (approval, attention, prohibition, soothing and neutral),
and the result was fed into the robot’s behavioral system
to generate an appropriate response. Neurobaby [7] was a

1http://www.irc.atr.jp/Geminoid/Telenoid-overview.html

Fig. 1: Our emotion transfer system the context of a multi-modal telepresence
application.

simulated infant that responded to changes in voice, using
a neural network to detect one of four emotional states. In
contrast with these systems, a telepresence robot user may
convey any one of a number of emotions (or even a mixture
of emotions) at any time.

Generating recognizable robot emotions through body lan-
guage is also not without limitations. Conventional approaches
play pre-defined robot poses such as raised arms for sur-
prise [8], or an aggressive stance for anger [9]. These
allow for scaling so that the gesture can be more or less
activated [10] [11], but its usage is restricted: 1) the poses and
emotions are limited to a hand-designed set, and 2) the robot
cannot do any other gestures (e.g., emblematic, interactive,
punctuative [12]) at the same time. For example, “angrily
pointing” would not be possible. Another promising method is
the use of the Laban Movement analysis [13], which prefers to
convey affect through features relating to weight, space, and
time.

In this paper, we propose an emotional telepresence frame-
work to transfer emotional voice to robot gesture (Fig. 1) that
1) does not require emotion classification and 2) can be applied
to virtually any gesture. Although we design our system to be
flexible to any number of emotional expressions, we limit the
present study to verifying that our system can convey four of
the basic emotions: happiness, sadness, anger, and fear.

The rest of this paper is organized as follows. First, we will
give an overview of our general approach, and describe in
detail our implementation. Experiments and results will then
be presented.



II. AN EMOTION TRANSFER FRAMEWORK

We first overview our general philosophy and requirements
for an emotion transfer system.

A. Pose independence

To be pose-independent, we do not focus on gestures them-
selves, but on their dynamics. Recent studies in neuroscience
show that movement alone may induce emotion. In [14],
it was shown that the observation of angry hand actions
recruited the same areas of the brain as when viewing an
angry face. A similar result was found in the comparison of
whole body expressions of fear, in both dynamic as well as
static conditions [15]. In psychology, point-light displays of
dancers portraying fear, anger, grief, joy, surprise and disgust
were recognized significantly above chance (63%) in [16].
These impoverished displays of movement were recognized
significantly above chance even when inverted. Another study
recorded point-light displays of actors performing “drinking
and knocking movements” in 10 different affects [17]. Their
results showed that the Circumplex affect model’s [18] pleas-
antness and activation dimensions could be recovered in the
movements. We do not claim that pose is irrelevant (their
importance is well-known [15] [19]), but these studies give
evidence to a strategy already well-known in the animation
industry: we can use motion to imply “emotions” for humans
as well as non-humans, and even for objects like vacuum
cleaners [20].

B. Classifier-free

An emotion transfer system should model both emotional
input and output on a continuous space. Affect models like
the Circumplex affect model have been used in previous
work to represent emotion in 2-dimensions [10]. In these
approaches, the system designer must map low-level features
to the two dimensions of valence (i.e., pleasantness) and
arousal (i.e., activation) [6]. It is common to use these models
for affect generation, but it is not always clear how to map the
dimensions to affective input. For example, what makes for a
pleasant or unpleasant voice? Features ranging from speed to
voice quality to pitch changes have been found to be correlated
with pleasantness [21], which is why emotion classification of
feature vectors is such a popular approach (e.g., [22] [23]).

C. Extensibility to other domains and applications

We design our emotion transfer framework to be extendible
to other modalities and applications. Although we focus here
on speech input and gesture output, a framework should allow
the inverse (emotional movement as input, and speech as
output), or human speech to robot speech (Fig. 1). We also
propose that such a framework be adaptable to modalities other
than speech and gesture; for example, transferring emotion
from a conductor’s gesture to music. Finally, although we fo-
cus on Aldebaran Robotics’ humanoid robot NAO2, ideally the
framework should be easily applied to other robot hardware.

2www.aldebaran-robotics.com

Fig. 2: Overview of DESIRE cross-modal emotion transfer framework.

III. DESIRE: DESCRIPTION OF EMOTION THROUGH
SPEED, INTENSITY, REGULARITY AND EXTENT

We propose a framework (Fig. 2) that models emotion
through dynamic parameters of speed, intensity, regularity
and extent. For short, we call this parameter set DESIRE:
Description of Emotion through Speed, Intensity, Regu-
larity and Extent, or simply SIRE. Speed and extent have
been widely accepted in the Human-Robot Interaction (HRI)
and graphics communities to convey some aspects of emo-
tion [9] [20] [24]. For example, fast or large motions give an
impression of energy and may convey anger or happiness [13].
In this study, we examine speed and extent, along with two
other parameters called regularity and intensity which are
well-known in the fields of affective speech and music. Our
hypothesis is that SIRE is sufficient for transferring four
emotions from voice to gesture.

In short, the DESIRE framework is:
1) Dynamic parameters, representing universally accepted

perceptual features relevant to emotion (SIRE). We
define them as a 4-tuple of numbers S, I,R,E ∈ [0, 1].

2) Parameter mappings, between the dynamic parameters
and robot-specific implementation.

The parameter mappings can be divided into two-layers (see
Fig. 2):

• Hardware-independent layer: A mapping from DESIRE
to perceptual features (based on discipline-specific stud-
ies).

• Hardware-specific layer: A mapping the perceptual fea-
tures to a hardware-specific implementation (by the sys-
tem designer).

A. Hardware-independent layer

The DESIRE framework was inspired by commonali-
ties found between emotion in movement, voice and music
([28], [25]). In these fields, the parameters of speed, intensity,
regularity and range are not new, but have been described in
varying ways. For example, speed is called rate in speech liter-
ature [21], or animation in gesture [27]. We have summarized
our literature review in Table I. This table is not meant to be
comprehensive, but rather to give some practical guidelines
for how to map SIRE to various modalities. In some cases,
multiple interpretations are proposed. For example, it may not
be clear how to implement joint “phase shift” on robots with
few degrees of freedom. In this case, we hypothesize that
another interpretation of regularity, such as “directness”, can



TABLE I: DESIRE parameters and associated emotional features for modalities of voice, gesture. Features in italics were used in our study.

Modality mappings to relevant emotional features

Parameter Description Voice Gesture

Speed slow vs. fast speech rate [21], pauses [25] velocity [26], animation [27], quantity of motion [28]
Intensity gradual vs. abrupt voice onset rapidity [25], articulation [21] acceleration [26], power [29]
Regularity smooth vs. rough jitter [25], voice quality [21] [25] directness [26], phase shift [24] [17], fluidity [30]
Extent small vs. large pitch range [21], loudness [25] spatial expansiveness [29] [27], contraction index [26]

be used in practice for mapping, though verifying this is set
for future work. How to evaluate a particular mapping choice
will be examined in Section IV-A.

B. Hardware-specific implementation

We provide here the mappings shown in Fig. 2 for 1)
extracting SIRE from emotional speech audio samples, and 2)
generating motions from SIRE on the NAO Humanoid robot.

1) Extracting SIRE from Voice: In this section, we assume
an input speech sample x(t) with sample rate fs and length
N . In our experiments, this results from audio files recorded
at 16kHz.

Speed is mapped here to speech rate, or more specifically,
syllables per second. One language-agnostic option is to detect
speech rate through acoustic features only (without speech
recognition), although the state-of-the-art in this problem still
has about a 26% error rate [31]. For this reason, we manually
provide the number of syllables b for the purposes of this
study. We assume that the sentence sample is clipped at the
beginning and end of the utterance, giving us b∗fs/N syllables
per second. We note informally that, over a short utterance,
a miscalculation of a few syllables can have a significant
influence on the calculated speed between 0 and 1. There-
fore, future work should explore the extent of this practical
limitation, for example by reliably extracting syllables with
an Automatic Speech Recognition system such as HTK [32],
using long utterance frames, and so on.

Intensity is implemented here as voice onset rapidity. More
specifically, we find the power trajectory p(k) of x(t) and
calculate its maximum rate of change. The power is given for
every frame k of size n (in our experiments, n = 1024) by:

p(k) =

n−1∑
i=0

x(k · n+ i)2 (1)

and onset rapidity is:

max
k=1,...,N/n

p(k)− p(k − 1). (2)

Regularity is mapped here to the inverse of jitter in the voice
sample, as jitter has been related to vocal “roughness” in [33].
Jitter is defined for each utterance as:

1

N − 1

N∑
t=1

|x(t)− x(t− 1)| (3)

Extent is defined as the range of pitch in the speaker’s
voice. We used the Snack sound toolkit3 implementation of
the average magnitude difference function (AMDF) [34], an
autocorrelation function, to extract the utterance’s f0 trajectory,
taking extent as the difference between the lowest f0 and the
highest f0.

Scaling was performed in a similar fashion for all of SIRE.
Given the minimum and maximum values for each parameter
(experimentally chosen), we linearly scale to achieve a param-
eter between 0 and 1. For instance, pitch range was linearly
scaled between a minimum f0 of 40 Hz and a maximum f0
of 255 Hz. In future work, we should study how this could
be adapted to the speaker, for example by defining extent as
the user’s deviation from their pitch average. As for speed,
we used a minimum speech rate of 2 syllables per second
and a maximum speech rate of 7 syllables per second, based
on our input set. Similarly, these values should ideally be set
according to context or the speaker’s learned history.

2) Gestural mappings for NAO Humanoid: In this section
we describe how we implement the perception of speed,
intensity, regularity and extent on the NAO humanoid robot.

A gesture is considered here as a simple motion from a
“base posture” p0 to an “extended posture” p1 and back to the
“base posture” to be achieved at three target times t0, t1, t2
(Fig. 3). Intuitively, speed S is mapped by performing a simple
linear down-scaling of times t1 and t2 (e.g., see Algorithm
1, lines 4-5). Intensity I is modulated by bringing the start
position and middle position times temporally closer together,
effectively increasing the relative acceleration to reach the
middle position (e.g., Algorithm 1, line 4). Regularity R
is implemented either as joint phase shift and directness,
which can be thought of as temporal and spatial regularity
respectively; for arms, a more irregular movement is created by
temporally “shifting” one of the arm movements (Algorithm
2, line 3), and for the head, an irregular movement is created
by adding side-to-side movement (Algorithm 3, lines 1-3).
The amount of side-to-side movement δs1, δs2 is determined
by a random variable taken from a normal distribution with
variance inversely proportional to R. In other words, we give
more chance to creating a highly irregular movement for low
values of R. Finally, extent is calculated by updating the
effector’s extended position, scaling it linearly between the
base and extended positions depending on the value of E (e.g.,
Algorithm 1, line 2).

3http://www.speech.kth.se/snack/



Fig. 3: Timeline of an arm gesture.

Formally, we define gestures for three of NAO’s end effec-
tors: the head, left arm, and right arm.

Let us define the arm gesture ((p0, p1), (t0, t1, t2)), where
p0 is the base position of the hand in 3D, p1 the extended
position of the gesture, and t0, t1 and t2 are the times in
seconds at which the base, extended, and base positions are to
be reached, respectively. We say that m is the minimum time
needed for the robot to change position from p0 to p1 safely.
We find a temporal offset δt using r, a maximum time length
used to offset joint movements.

We define the head movement ((κ0, κ1), (t0, t1, t2)) where
κ0 is the base configuration (pitch and yaw values) of the
head, and κ1 the extended posture. For the head, we find δs1
and δs2, spatial offsets for the base and extended yaw values,
taken from a normal distribution with variance proportional to
σ = (1−R).

The mappings for the left and right arms, and the head, are
outlined in Algorithm 1, 2 and 3.

Algorithm 1 MAPSIRE
〈
GNAO,left arm

〉
Require: (S, I,R,E) ∈ [0, 1]4

Require: p0, p1,∈ R3

Require: t0 ≤ t1 ≤ t2 ∈ R
Ensure: gout.t1, gout.t2 ≥ m

1: gout.p0 = p0
2: gout.p1 = p0 + E · (p1 − p0)
3: gout.t0 = t0
4: gout.t1 = max((1− S) · I · t1,m)
5: gout.t2 = max((1− S) · t2,m)
6: return gout

IV. EVALUATION

We performed three experiments to answer the following
research questions:

• Q1: How well do the implementations (described in Sec.
III) map to the SIRE parameters?

• Q2: Can the robot produce happiness, sadness, anger and
fear by modulating SIRE, and how well?

• Q3: What DESIRE values produce the highest recogni-
tion of happiness, anger, fear and sadness respectively?

• Q4: How well can our system transfer emotion from
speech to gesture?

Algorithm 2 MAPSIRE
〈
GNAO,right arm

〉
Require: (S, I,R,E) ∈ [0, 1]4

Require: p0, p1,∈ R3

Require: t0 ≤ t1 ≤ t2 ∈ R
Ensure: gout.t1, gout.t2 ≥ m

1: gout.p0 = p0
2: gout.p1 = p0 + E · (p1 − p0)
3: δt = (1−R) · r
4: gout.t0 = δt + t0
5: gout.t1 = δt +max((1− S) · I · t1,m)
6: gout.t2 = δt +max((1− S) · t2,m)
7: return gout

Algorithm 3 MAPSIRE
〈
GNAO,head

〉
Require: (S, I,R,E) ∈ [0, 1]4

Require: κ0, κ1 ∈ [0, π/2]× [0, π]
Require: t0 ≤ t1 ≤ t2 ∈ R
Ensure: gout.t1, gout.t2 ≥ m

1: δs1, δs2 ∼ N0,σ

2: gout.κ0 = (κ0.pitch, κ0.yaw + δs1)
3: gout.κ1 = (κ0.pitch + (1 − S) · E · (κ1.pitch −
κ0.pitch), κ0.yaw + δs2)

4: gout.t0 = t0
5: gout.t1 = max((1− S) · I · t1,m)
6: gout.t2 = max((1− S) · t2,m)
7: return gout

• Q5: Does the addition of motion improve recognition of
emotion?

A. Experiment 1: SIRE Parameters

In this experiment, our goal was to verify that our SIRE
mappings agree with evaluators’ perceptions of speed, inten-
sity, regularity and extent (Q1). We recruited 29 self-reported
native English speakers through the Internet, 79% male and
21% female, and asked them to rate videos of robot gestures
generated by modulating each SIRE parameter independently.
For each of S, I,R,E respectively, we compared the values
0.1 and 0.9 while keeping the other parameters constant at 0.5,
with the exception of regularity, which was kept constant at
0.9 to avoid random perturbations. Two gestures were tested:
a head nodding movement, and an arm extension movement
(Fig. 4).

Each participant was asked to compare a total of eight pairs
of videos – four for head-nodding, four for arm gestures.
Depending on the parameter being compared, the participant
was asked to choose one of the two videos (e.g., comparing a
head nod at extent 0.1 and 0.9):

• Which has higher speed?
• Which is more intense?
• Which is more regular?
• Which has larger extent?



(a) Arm start position (b) Arm end position (c) Head start position (d) Head end position

Fig. 4: Gesture positions for Experiment 1

TABLE II: Recognition of high-low mappings of SIRE parameters, for arm
gesture (AG) and head nod (HN) and average difficulty from 1 (very easy)
to 5 (very difficult)

Parameter % AG Difficulty % HN Difficulty

Speed 100 1.3 100 1.4
Intensity 86 2 93 2
Regularity 93 1.7 86 1.9
Extent 97 1.6 100 1.4

Following each question, the participant was asked to rate
the difficulty of the question on a 5-point Likert scale: very
easy, somewhat easy, neutral, somewhat difficult, very difficult.
Evaluators could freely give comments on each choice, and
had no time limit.

Results and discussion. As Table II shows, the mappings
as described agree with raters’ perceptions at more than 86%
in all cases (Q1). The prototypical features of Speed and
Extent are the most easily recognized. This is shown by
the nearly perfect recognition rates and subjective evaluation
of “very easy” to distinguish. Intensity and regularity are
slightly less recognized, but still more than 86% of raters
were still able to tell the difference between “low intensity”
and “high intensity”, as well as “irregular” and “regular”,
with an average rating of “somewhat easy”. One explanation
for the lower ratings of regularity and intensity may have
been the choice of wording. According to rater comments, the
feeling of “intensity” could also be given in a slow, purposeful
stare or movement. This suggests that future tests should use
unambiguous words to describe the dimension, such as gradual
vs. abupt. The word “regular” was also understood as “normal”
by at least one evaluator. This is a problem when evaluating
motions using one axis only; they look “robotic” rather than
“normal”. In this case, the addition of irregularity could make
the movement look more human-like, and therefore more
“regular”. Like intensity, we suggest to use another description
to evaluate regularity, like smooth vs. rough.

B. Experiment 2: Motion only

In this experiment, our goal was to find out whether the
robot could produce recognizable emotions through motion
(Q2) and if so, find out what SIRE values produced each
of four emotions (Q3). Additionally, by using SIRE values
extracted from voice data, we test how reliably our system
converts a vocally expressed emotion to the same emotion on
a gesturing robot (Q4).

We recruited 20 normal-sighted evaluators from Kyoto
University Graduate School of Informatics. The participants
were males of Japanese nationality, ranging in age from 21-
61 (mean=27.1, stdev=8.9). As input, we used audio samples
taken from the Berlin Database of Emotional Speech4, which
is a database of emotional speech recorded by professional
German actors [35]. Each sample was a wave file at 16kHz,
all with the same semantic content: “Heute abend könnte ich
es ihm sagen.” (Translated in English as “Tonight I could tell
him.”). The volume of all files had been previously normalized.
Four samples each of happiness, sadness, fear, and anger were
used as input, for a total of 16 samples ranging from 1.5 - 3.9
seconds. We selected only utterances with recognition rates of
80% or higher by German evaluators.

Given the SIRE values extracted from these audio samples,
we generated 16 movement sequences and showed them to
the participants using a simulated NAO shown on a projected
screen. Only one type of gesture was used (an extension of
both arms in front of the robot, as in Fig. 3), repeated four
times in series for each sequence. After each sequence, the
participants were given 5 seconds to choose one of happiness,
sadness, anger, or fear in a forced-choice questionnaire.

Results and discussion. In Table III, we outline the move-
ments which had the highest agreement between evaluators for
each of the four emotions. It shows that the robot, by changing
the dynamics of the same gesture, could produce recognizable
emotions at more than 60% inter-rater agreement (Q2). Table
III also gives the SIRE parameters which achieved them (Q3).
In summary, we can see that:

• happiness can be produced with med-high speed, med-
low intensity, med-low regularity, and med-large extent

• sadness can be produced with low speed, medium inten-
sity, med-high regularity, and medium extent

• anger can be produced with med-high speed, high inten-
sity, med-low regularity, and large extent

• fear can be produced high speed, med-high intensity,
medium-low regularity, medium extent

This is not an exhaustive list of possibilities (to do so, we
would need to examine much more points in the 4-D SIRE
space), but it gives a useful hint for designing motions with
these emotions. For example, one motion sample was recog-
nized in the majority as anger, though the source speech file
was happiness, with (S, I,R,E) = (0.71, 0.75, 0.75, 0.91).

4http://pascal.kgw.tu-berlin.de/emodb/



(a) Source: “Happiness” voices (b) Source: “Sadness” voices

(c) Source: “Anger” voices (d) Source: “Fear” voices

Fig. 5: Experiment 2: Recognition results of gestures generated by voice samples

Fig. 6: Recognition results of motion (Exp. 2) and voice+motion (Exp. 3)
compared to voice only (Exp. 3).

TABLE III: Sequences with best agreement between evaluators and their
corresponding SIRE values.

Emotion Agreement (%) S I R E

Happiness 60 0.72 0.20 0.22 0.74
Sadness 75 0.12 0.44 0.71 0.42
Anger 60 0.58 0.92 0.24 0.9
Fear 65 0.93 0.72 0.34 0.47

In a detailed analysis (Fig. 5), we note that some “happi-
ness” samples were recognized as anger with greater agree-
ment (48%). The reason for this may be explained through the
results of Experiment 3. In fact, the voice-only condition of h3
and h4 (Fig. 5) were the most poorly recognized of all samples,
at 33% and 38% respectively, meaning that the German
vocal expressions of happiness were difficult to recognize for
Japanese. Since both voice and motion were similarly poorly
recognized, this gives evidence to our hypothesis that the
emotion for both voice and motion have the same fundamental
basis in our dynamic parameter set.

Figure 6 shows the aggregated recognition result of each
emotion converted from voice to gesture. We find that the
recognition rates for all emotions are significantly greater than
chance (25%), suggesting that the DESIRE framework indeed
converts the source vocal emotion to the same emotion in ges-
ture (Q4). We compare them here with the voice recognition
results from Experiment 3 (Section IV-C), which act as an
upper bound.

C. Experiment 3: Adding motion to voice

In this experiment, we assessed the usefulness of the
DESIRE system for emotional expression via telepresence
(Q5). We compare the emotion recognition of 1) a humanoid
playing a voice only with 2) a humanoid playing a voice and
performing the associated DESIRE motion. Additionally, as
opposed to Experiment 2 in which only one type of arm
gesture was used, here we test two different arm gestures
and head motion. Our hypothesis is that adding motion will
increase recognition of emotions, or make the impression of
the emotion stronger over voice only.

We recruited 21 evaluators with normal (or corrected to
normal) vision and hearing from Kyoto University Graduate
School of Informatics. The participants were male, ranging
in age from 21-27 (mean=24.5, stdev=4.1). This experiment
was performed with a NAO robot placed on a table as shown
in Fig. 7. The robot was programmed to generate a head
movement and a randomly chosen arm gesture (either both
arms extending forward, or raising one hand while lowering
the other). The gesture dynamics were generated using the
SIRE values extracted offline from the 16 utterances described
in Section IV-B-3.

We presented the participants with two robot conditions.
• Condition 1: Voice only. The robot stayed still in a neutral

position (Fig. 7) while the vocal utterance was played
through the 2 speakers in the robot’s head.

• Condition 2: Voice + Motion. The robot moved according
to the SIRE parameters found from the vocal utterance
playing simultaneously through its speakers.

Given the 16 utterances, 32 robot sequences were generated
given the two conditions. Evaluators were given 5 seconds
after each sequence to choose the one emotion (happiness, sad-
ness, anger, and fear) they thought the robot was conveying the
most. Additionally, they rated the difficulty in understanding
the robot’s conveyed emotion, using a 4-point Lickert scale
ranging from ”easy to understand” to ”hard to understand”.

Results and discussion. In this experiment, we explore the
result of adding motion. Since we saw in Experiment 2 that



Fig. 7: Experimental setup for experiment 3, position of robot during voice-
only condition.

Fig. 8: Experiment 3: Comparison of ease of understanding, from difficult (1)
to easy (4), for correctly recognized samples.

motion was generally less recognized than voice, the expected
result is that adding motion would not improve recognition
compared to voice. This was the case for happiness, sadness
and anger (Fig. 6). On the contrary, for the emotion that
was the most difficult to recognize through voice only–fear–
the addition of motion increased recognition from 49% to
55% (Q5). This may be explained by the fact that, according
to evaluator comments, vocal expressions of fear and sad-
ness were both gave a negative impression, and were easily
confused between each other. However, according to Table
III, we see that fear movements differ greatly from sadness
along the speed dimension, which may explain this increase
in perceptual separation.

Next, we compare the evaluator’s ratings for “ease of
understanding”, i.e., how clearly was the emotion expressed?
Intuitively, this is the factor we wish to increase by adding
robot motion. For a given rater, when the samples was recog-
nized correctly for both voice and voice+motion, we compared
the rater’s ease of understanding for two sequences.

In Fig. 8, we notice that anger was better understood when
the robot was still than when the robot was moving. This could
be due to the choice of “neutral” stance during the voice-
only condition; the robot was staring straight forward, with
hands closed. A maintained stare has been found to be a sign
of hostility or anger for both people and animals [36] [37].
On the contrary, the movements generated in our experiment
included head movements that turned left and right when
regularity was low (R was less than 0.2 in all anger samples).
This suggests that to provide reliable anger movements 1)
regularity should not be implemented with left-to-right spatial
movement, but perhaps using temporal regularity instead or 2)
the head should remain still (i.e., only arm gestures should be

used). Experiment 2 gives further evidence to this hypothesis,
because recognition of anger was relatively high, and the
samples only used arm movements. This also suggests that a
humanoid that maintains a forward-facing stare may be more
easily viewed as angry, which could have general implications
in HRI as to how robots are perceived.

We also see that in Fig. 8 that happiness in particular was
more clearly portrayed through voice+motion than through
voice only. This may be explained by the fact that the neutral
position pose of a stationary robot is quite different from the
energetic portrayals of happiness that typically accompany
happy voices. This suggests that the use of a gesticulating
humanoid may be most useful for portraying joy through a
telepresence robot.

V. CONCLUSIONS AND FUTURE WORK

In this study, we studied a hypothesis that emotion from
voice could be effectively transferred to motion through only
four features (speed, intensity, regularity and extent). Our
cross-cultural experiments suggest that this is indeed the
case. These exploratory results are promising, but should be
replicated with other robots, movements and/or cultures to
add support to the data presented here. Our analysis provided
two other surprising results. The first is that German fear
voices were poorly recognized by Japanese, and that adding
SIRE-generated motion improved the recognition of fear by 6
points. Secondly, we found that when SIRE-motion matched
the voice, portrayals of happiness were rated significantly
easier to understand than for voice alone.

Our results suggested that future work should study how to
best integrate emotional motion with other cues, like pose. For
example, a multi-modal system integrating prototypical poses
could be useful for situations when cues contain conflictual
meanings, such as sarcasm. Interactions with other cues could
also be tested, such as adding flashing red eyes for anger. An
ideal voice-to-motion system would also integrate the semantic
content of the voice, for example using keyword-spotting to
choose the appropriate gesture template on which to add a
SIRE-motion.

In the future, we plan to test the system’s real-time capa-
bilities and the extent of this system’s emotional vocabulary.
In our study, voice actors were used to convey emotion that
was easy to recognize; it would be useful to examine how
non-extreme emotions, or emotions like surprise, disgust, and
love, are portrayed. We also plan to extend the framework to
other modalities which may benefit from emotion generation,
such as robot music or dance (Fig. 2).
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