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Abstract

Music has long been used to strengthen bonds between humans. In our research, we develop mu-

sical co-player robots with the hope that music may improve human-robot symbiosis as well. In this

paper, we underline the importance of non-verbal, visual communication for ensemble synchroniza-

tion at the start, during and end of a piece. We propose three cues for inter-player communication,

and present a theremin-playing, singing robot that can detect them and adapt its play to a human

flutist. Experiments with two naive flutists suggest that the system can recognize naturally occur-

ring flutist gestures without requiring specialized user training. In addition, we show how the use

of audio-visual aggregation can allow a robot to adapt to tempo changes quickly.

keywords: entertainment robots, gesture recognition, audio-visual integration

1 INTRODUCTION

In Japan’s aging society, the elderly may soon rely on robots to perform chores or assist in day-to-day

tasks. According to one survey, one of the main requirements for these robot companions is natural,

human-like communication [1]. Indeed, if a robot lacks communication skills, the human may sense

a feeling of incompatibility, fear, and frustration [2]. Especially in cases where a task may involve a

human’s safety, a certain trust is needed between human and robot; this necessity is often referred to as

human-robot symbiosis. Therefore, it’s essential to find ways of building a bond of familiarity and trust

between humans and robots if we want them to be accepted as helpers in our society.

Music has a long history of creating social bonds between humans. Every culture in the world has

gathered from time to time in groups to participate in rhythmic song or dance. As stated by psychologist

Brown [3], “music is an important device for creating group-level coordination and cooperation[:] a

musical performance [. . . ] tends to create a symbolic feeling of equality and unity, one that produces

a leveling of status differences among the participants, thereby dampening within-group competition.”

Indeed, in a study by Wiltermuth et al. [4], it was shown that groups that sang together trusted each

other more in a subsequent prisoner’s dilemma game.
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Musicologists say it is the synchrony of music and dancing that induces this social bonding effect [3].

Even in the era of proto-humans, some things could only be possible with synchronized movement:

to transport heavy stones, people had to pull in synchrony; by shouting together, the sound could

be projected farther away. McNeill [5] observed that the synchronized march of soldiers is still being

practiced despite its practical uselessness in modern times; he reasoned that this “muscular bonding”

is important for group cohesion. Recent studies in biology may support this observation; it was shown

that rowers had a higher pain threshold when rowing in unison with other rowers, rather than in the

individual condition [6]. The mirroring or “chameleon” effect may also be at play here: a subject is

more likely to get along harmoniously with a group if he/she acts similarly. The reverse is true if the

subject acts out of sync [7] [8].

Our goal is thus to improve human-robot symbiosis by making a musical co-player robot, focusing

particularly on the synchronization aspect. We focus on a score-playing robot, for example to play

in duets or trios [9] based on a written score. In ensembles, temporal coordination is crucial because

expressive music contains many deviations from the score; for example, a player may speed up their

play to brighten the musical mood, or slow down to express sadness [10]. It is during these changes

when the robot must synchronize with the human player’s tempo. In addition, we focus on two points

in music where synchronization is key: the start of the first note, and the ending.

Let’s briefly survey the systems which already exist for digitally accompanying musicians. In the

field of computer accompaniment, play-back software such as [11] [12] track the notes played by the

musician to determine where to play in its own score. This is known as score following, and has also

been implemented by Otsuka et al. [13] on a robot system. However, it has been suggested [14] that

this is not how humans keep in time; musicians cannot, and do not need to, memorize co-players’

scores to stay in sync. A more likely explanation is that musicians keep track of the music’s “pulse”.

This approach is called beat tracking. For example, Georgia Tech’s HAILE drum robot [15] detects

human drumbeats using energy-based beat trackers. Using the beats, it can detect speed and perform

improvisation accordingly. In [16], a robot can listen to pop music and sing along to the beat. A common

problem is that these beat trackers have difficulty when there is no percussive, steady beat, for instance

in violin or flute ensembles. So how do humans synchronize in these situations?

In real ensembles, nonverbal behaviors like body movement, breathing, and gaze are used to co-

ordinate between players [17]. Multiple studies show the importance of visual information. In [18],

Wii-mote-carrying children danced to music, and were shown to move with better synchronization in a

face-to-face social condition as opposed to dancing alone. Katahira et al. [19] compared pairs of face-

to-face and non-face-to-face drummers, and also found a significant contribution of body movement to

temporal coordination between performers. By observing authentic piano duets, [20] found that head

movements, exaggerated finger lifts and eye contact are used to communicate synchronization events

between players. Finally, Fredrickson [21] showed that band musicians synchronize best by both watch-

ing the conductor and listening to their co-players. Truly, both audio and vision are important for

synchronization.
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Figure 1: The singing, theremin-playing music robot detects a flutist’s cues to play a duet.

In this paper, we describe a unique singing, theremin-playing robot that can synchronize using

both these senses. We assume a small human-robot ensemble (e.g. duet or trio) with no conductor.

In this case, we need to formalize the musician-to-musician communication between humans, a topic

little studied in music literature so far. In particular, we posit that there exist inter-player cues for

coordinating at least three types of temporal events: start, stop, and tempo change. We evaluate a

music robot system that plays the theremin [22] and sings, playing music with a flutist in the following

way:

(1) It begins playing when it detects a visual cue from the flutist

(2) It changes its tempo by watching and listening to the flutist

(3) It ends a held note (i.e. fermata) when visually indicated

This robot co-player system shown in Fig. 1 has been described in detail in [23] [24]. In this paper,

we review the components of the system and examine its validity with naive users.

1.1 VISUAL CUES

We first formalize the concept of visual cue, hereafter also called gesture. In conducting, a typical

gesture denotes the tempo at which the musicians should synchronize. These visual events have been

called “beats” in [25], and are typically described as the conductor baton’s change in direction from a

downward to an upward motion [26]. Outside of traditional conducting studies, research on clarinetist’s

movements found that “movements related to structural characteristics of the piece (e.g. tempo)” were

consistently found among player subjects, such as “tapping of one’s foot or the moving of the bell up

and down to keep rhythm” [27]. This up-and-down motion will be the basis of the visual cues described

next.

According to our informal observation, flutists move their flutes up and down in a similar way to a

conductor’s baton to communicate within an ensemble. Our three observed cues are shown in Fig. 2.
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Figure 2: Trajectories of flute visual cues, along with examples of locations used in score. As shown, the

end cue is a circular movement of the end of the flute, and the beat cue is a simple down-up movement.

Despite this difference, they both appear as a down-up motion when viewed from the front.

A DOWN-UP-DOWN motion of the end of the flute indicates the start of a piece, while the bottom

of a DOWN-UP motion, called an ictus in conducting, indicates a beat. Finally, a circular motion of

the end of the flute indicates the end of a held note. We hypothesize that players of other baton-like

instruments like clarinet, trumpet or trombone may also use similar signals to communicate. Here, we

verify whether these cues are used naturally between flutists.

We define “natural” here as “without needing explicit prompting”. This is in opposition with system-

specific gestural control. Consider the flute-tracking computer accompaniment system in [28] which plays

a given track when the flutist makes a pre-defined pose with her flute, for example “pointing the flute

downward and playing a low B.” This gesture is system-specific, and not a natural gesture used among

real flute players. The advantage of detecting natural gestures is that the users do not have to learn nor

think about special movements to control the robot, which can be difficult when already occupied with

performing a piece. In addition, other human co-players will also “naturally” understand the flutist’s

cues, making the ensemble size scalable.

2 A ROBOT CO-PLAYER SYSTEM

In this section, we describe how to recognize the visual cues shown in Fig. 2. We will then describe

the shortcomings of a purely visual system and how we augment it with audio. Finally, we will give an

overview of our robot co-player system.
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Figure 3: Original input image (top left), detected Hough lines (top right) and outliers marked in red

(bottom right).

2.1 DETECTING VISUAL CUES

2.1.1 Flute localization

The first step in detecting the visual cues described in Sec. 1.1 is localizing the flute. The process is

shown in Fig. 3. In our system, we assume the robot faces the flutist such that its camera produces images

like Fig. 3 (top left). Localization is performed by using a combination of Canny edge detection [29], the

Hough transform [30] and RANSAC outlier pruning [31]: the Hough line detection algorithm outputs

many lines along the flute, and RANSAC removes spurious lines caused by background or clothing.

The flute angle θ is calculated as the mean of the angles of the remaining inlier lines. Other tracking

methods such as optical flow may be considered for a more generic system; we selected this simple

angle-extraction approach to be robust against noise caused by camera movement while the robot plays

the theremin.

2.1.2 Flute tracking

Next, our system tracks the flute angle calculated from the localization step. For each pair of consecutive

video frames F at time t− 1 and t, we calculate the change in θ:

∆θ = θ(Ft)− θ(Ft−1). (1)

The flute’s speed, defined here as ∆θ, is input into the finite state machines (FSM) in Fig. 4. Notice

that the beat cue and end cue FSMs are the same due to their similarity when viewing the flutist from

the front. When the end of the flute is moving downwards faster than a certain threshold, the FSM

moves into a BOTTOM state, and conversely it moves into a TOP state. The speed threshold acts as
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(a)

(b)

Figure 4: Finite state machines for start cue (a) and end/beat cues (b).
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a basic smoother, so that the state is not changed for small values of θ. We reset the FSM state to the

beginning if no significant motion is detected for 1 second.

2.1.3 Using visual cues during a performance

Context is important for deciding what a movement means. For example, a hand wave could both be

used to say goodbye, or to shoo away a fly. In our system, we filter our visual cues based on context;

here, context is based on score location. Start cues only control the robot’s play at the start of the

piece, and end cues are only given attention when the robot is currently holding a note. Contrary to

the start and end cues, beat cues are valid throughout the piece.

Beat cues are used to detect changes in tempo. Our initial tempo change mechanism [32] required

the player to perform three regularly-spaced visual beat cues to indicate a tempo change. The average

difference between these beat cues determined the tempo. This three-cue sequence ensured the move-

ments were indeed purposeful messages to the robot to change tempo, and not arbitrary movements

while playing. The drawback of this approach is that performing three regularly-spaced beat gestures is

too strenuous for continued use throughout a performance. The method described in the following sec-

tions integrates audio cues such that only two beat gestures are required, as long as they are supported

by audio information.

2.2 NOTE ONSET DETECTION

We use flute note onsets as our source of audio information. The term ‘onset’ refers to the beginning of

a note, and onsets are useful for our system because notes may also indicate beats. For example, four

consecutive quarter notes in a 4/4 piece would have a one-to-one correlation with the beats. Similarly,

if there were more than four notes, the onsets could indicate a super set of the beats.

How can we detect note onsets? The review in [33] provides a good overview of methods, and

selecting an appropriate note onset detector depends on our usage. For instance, our first requirement

is that we want our robot to play in musical ensembles with a woodwind instrument – the flute. In this

case, the note onset detection method must be more sensitive than those used for percussion instruments

such as piano. It should detect soft tonal onsets; this includes (1) slurred changes between two pitches

and (2) repeated notes of the same pitch. A conventional approach may include a detectors for each

of these cases: a pitch detector for (1), and an energy-based [34] or Phase Deviation [35] detector for

(2). We selected a method that can deal with both cases simultaneously by detecting changes in both

spectral magnitude and phase in the complex domain [36].

Speed is also a requirement for our note onset detection method. We used the Aubio library [37]

implementation of Complex Domain onset detection, which is written in C and calculates the Kullback

Leibler divergence [38] in the complex domain from frame to frame in real-time. It should be noted,

however, that as mentioned in [33], phase-tracking methods including this Complex Domain method are

sensitive to noise, which we experienced when testing this on lower quality audio setups. Ideally, the
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own robot’s microphone should be used, with sound separation or frequency filtering should be used to

separate the flutist’s notes from the theremin sound (e.g. using the separation approach in [39]). For

the present work, our combination of a lapel microphone and Complex Domain detection worked well,

though a different method may needed if faced with audio signals containing environmental noise.

2.3 PERCEPTUAL MODULE: AUDIO & VISUAL BEAT MATCHING

The perceptual module of our co-player system combines the audio note onsets described in the previous

section with the visual beat cues from Sec. 2.1. We assume that the flutist wants to change the tempo

if: (1) the flutist plays notes on two consecutive beats, (2) makes visual beat cues on those beats, and

(3) the beats indicate a tempo within pre-defined limits. This is consistent with how humans play -

they do not, for example, triple their speed suddenly, unless it is already marked in the score.

We define instantaneous tempo as the time between the onset of the latest two beats, also known as

Inter-Onset-Interval (IOI). Our algorithm for IOI extraction works as follows. Let V and A respectively

be temporally ordered lists to which we add observed video and audio cue events at times tv and ta.

When a given audio and visual cue are less than δ1 milliseconds apart, we add the audio cue time to M ,

a temporally ordered list of matched beat times. We return a new tempo using the difference between

the last two matched beats, as long as it differs no more than δ2 milliseconds from IOIc, the current

tempo. Otherwise, we check whether the player has performed three beat cues resulting in two IOI’s

that differ by less than δ3 (set to 1000ms in our experiments). If so, we return their average as the new

IOI, under the same δ2 tempo change constraint.

Whenever an audio or visual cue event at time e is detected at time te, we run the following function.

if e is audio then

A← A+ te

if ∃v ∈ V, |te − tv| < δ1 then

M ←M + te

if |M | ≥ 2 and ||M [last]−M [last− 1]| − IOIc| < δ2 then

return M [last]−M [last− 1]

if e is video then

V ← V + te

if ∃a ∈ A, |te − ta| < δ1 then

M ←M +min({ta|a ∈ A, |te − ta| < δ1})

if |M | ≥ 2 and ||M [last]−M [last− 1]| − IOIc| < δ2 then

return M [last]−M [last− 1]

if |V | ≥ 3 and (V [last]− V [last− 1])− (V [last− 1]− V [last− 2]) < δ3 then

if (V [last]− V [last− 2])/2− IOIc) < δ2 then

return (V [last]− V [last− 2])/2

In short, visual beat cues can be viewed as an enable mask for the audio data. As shown in Fig. 5,
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Figure 5: Our audio-visual matching scheme. Visual cues act as a filter for note onsets that fall into a

given range around the visual cues. For a tempo change to be detected, only two of the three matched

beats above are needed.

extraneous offbeat notes are filtered using with a window width of 2 ∗ δ1 around each visual beat cue.

A matched beat corresponds to the note onset event that falls within that window. We experimentally

set our threshold δ1 to 150 ms, which gives a detection window of 300 ms around each visual beat cue.

If more than one audio note onset is detected within this window, the first onset is chosen - the earliest

onset detected.

It can be noted that the final IOI resulting from audio-visual matching is determined solely by the

audio note onset time. This is due to audio signals’ high sampling rate – we sample audio at 44100 kHz,

whereas video camera outputs 30 frames per second. Thus, although audio data may contain unneeded

note onsets (such as those at the bottom of Fig. 5), it is more precise. This precision is important, for

example, when using more than one camera (e.g., with two robot co-players). Even minute differences

in video frame rates and capture times can produce relatively large differences in detected tempos using

a vision-only approach.

In order for this simple fusion algorithm to be valid, a precise timing scheme is essential. We chose

to use Network Time Protocol [40] to synchronize the clocks of all our modules, some of which were

connected through ethernet. Alternatively, the Carnegie Mellon laptop orchestra [41] used a central hub

from which laptop instruments queried the current time. In addition to precise clock synchronization,

this event-driven formulation of the algorithm is required because the data from two data sources may

not arrive in sequence, due to network delays.

2.4 SYSTEM OVERVIEW

This system was implemented on the HRP-2 theremin-playing robot first introduced in [22], with the

addition of a VOCALOID singing module [42]. Fig. 6 overviews the robot co-player system. The

HRP-2’s Point Grey Fly camera is used to take greyscale images at 1024x728 resolution, at a maximum
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Figure 6: Overview of our robot co-player system

of 30 fps. When start and end cues are detected from the vision module, these commands are sent to

the theremin robot to start a piece or end a held note, depending on the robot’s current location in the

score. A 2.13 GHz MacBook with an external microphone was used as our note onset detection module.

The initial tempo is set to the one written in the score. After that, the system attempts to match input

from its two input modalities within the perceptual matching module, and sends on detected tempos

to the theremin player. As shown in Fig. 6, our non-verbal cue detection module controls two different

music systems via the network: the theremin robot and a VOCALOID singing synthesis program. This

suggests the portability of this system to other music tools with few or minor changes.

3 EXPERIMENTS AND RESULTS

We performed two experiments to determine the viability of our co-player system. Experiment 1 evalu-

ates the start and stop gesture recognition module. Experiment 2a and 2b evaluate the tempo tracking

functionality.

3.1 Experiment 1: Visual cue detection with naive players

In [23], we found that our method detected start cues at greater than 93% accuracy, and end cues with

99% accuracy given our initial study with one flutist. In this experiment, we recruited two naive flutists
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Figure 7: Musical situations used for surveys: a) the beginning of a duet to investigate start cue b) a

passage with fermata for end cue c) a note with simultaneous start and stop and d) a ritardando passage

to investigate beat cues.

from Kyoto University’s music club to further evaluate our system. Participant A was an 19-year-old

female with 12 years of flute-playing experience, and participant B was a 22-year-old female player with

9 years of flute-playing experience. Each was invited separately to perform the experiments.

3.1.1 Gesture survey and analysis

In this experiment, we wanted to know whether flutists naturally used the gestures we hypothesized.

That is, would they make start and end cues as we defined them, without prompting? The participant

was given two sequences of duet music: one involving a simultaneous start (Fig. 9(a)), and one containing

a fermata, requiring a simultaneous end of note (Fig. 9(b)). The participant was asked to play each

musical sequence twice, assuming the role of leader. A secondary, advanced flute player familiar with the

system assumed the role of follower, hereafter referred to the Follower. At no point did the participant

receive any guidance as to how to lead. Their movements were filmed with a video camera at 25 fps for

offline visual analysis and recognition by our system.

3.1.2 Gesture analysis

We plotted the angle of their flutes over time leading up to the start of a note (Figure 8(a) and 8(b)) and

end of a note (Figure 8(c) and 8(d)); the lower the angle, the more the flute end is pointing downward,

and so on. The audible beginnings and ends of notes have also been indicate with a diamond.

From these trajectories, we can validate our state machines for start and end gestures. Indeed, for
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Figure 8: Resulting flute trajectories for a)-b) participants start cues and c)-d) participants end cues.

each start cue, we notice a DOWN-UP-DOWN trajectory before the note onset. In fact, Participant A’s

movements implies an additional state: UP-DOWN-UP-DOWN. However, Participant B’s movement

is not so consistently complex. The minimal sequence across our two players therefore appears to be

DOWN-UP-DOWN. As for the end cue, we can also verify from the figures that there is a characteristic

DOWN-UP motion before the end of the note, as hypothesized in Section 2.1.

A few other interesting points were noticed during this experiment. Firstly, Participant A’s move-

ments were much larger and pronounced that Participant B’s. This implies that the method should be

able to handle both large and small gestures. According to Wanderley et al.’s [27] study, this differ-

ence in magnitude may be expected: when they asked performers to perform with more exaggerated

movements, they made the same movements, simply with a higher magnitude. Secondly, although not

marked, a sharp breath intake sound could be heard before each note start. This breath sound is another

indicator for start of play, as discussed in [44]. This may be a physiological correlation with the gesture,

as the flute is raised when the player’s lungs fill quickly with air. It is possible that the start gesture

may not be purely iconic, but in fact be linked with the physical phenomenon of playing.

Through this experiment, we can check that the system is natural to use, without resorting to

subjective surveys. Our system indeed was able to detect these four cues with a minimum state machine

speed threshold ∆θ = 0.003 radians/frame (equivalent to 0.07 radians/sec given our frame rate of 25

fps). We used the speed threshold derived from this survey to evaluate our system in the next section.
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3.1.3 Recognition rates

In this experiment, we set the ∆θ = 0.003 and asked each flutist to play the role of the leader for the

music in Fig.7(c). We asked them to perform this excerpt five times with the Follower, and five times

alone. Across our two participants, this resulted in ten start gestures and ten end gestures, for a total

of 20 samples for each gesture type. Our system was able to detect all 20 of the gestures, with 3 false

detections of start gestures. Indeed, a false start can be disastrous for a live performance, but this is

also a challenge for musicians. As stated in a conducting technique guide [45]: “nothing before the

start must look like a start. There must be no mystic symbols, twitches, or other confusing motions.”

Avoiding accidentally cue-ing a start is indeed a tough problem for humans as well as computational

systems.

3.2 Experiment 2: Performance of audio-visual beat fusion module

In this experiment, we evaluate our system’s note onset and tempo detection accuracy.

A. Visual and Audio Beat Detections

An advanced flute player with 18 years of experience, equipped with a lapel microphone, played two

legato notes in alternation, with no tonguing: A2 and B[2 at approximately 66 bpm. With each change

in note, the flutist performed a visual beat cue. A secondary observer, a classically trained intermediate-

level clarinet player, tapped a computer key along with the changes in notes to provide a human-detected

tempo (measured in IOI) for comparison.

The average absolute IOI error between our audio-visual tempo detection and the human detected

tempo was 46 ms with a standard deviation of 32ms. On the other contrary, the relative IOI error (i.e.

taking into account whether the error was negative and positive) was -1ms over 72 matched beats. This

means that despite going too slow or fast during the piece, the robot would still end at virtually the

same time as the human.

As for beat onset error, we found a mean of 180ms and a standard deviation of 47ms. The onset

error was high, but not indicative of the system’s performance; the groundtruth onsets were consistently

tapped 100-200ms later than the system, possibly due to the human’s motor delay compared to the audio.

In Rasch’s [46] synchronization experiments of wind and string instrument ensembles, asynchronization

was defined by the standard deviation of onset time differences, and ranged from 20 ms for fast tempos

to 50 ms for slower tempos. As our experimental tempo was relatively slow, the asynchronization of

47ms falls into a range comparable to human performers. Furthermore, as noted by Rasch, the smooth,

relatively long rise time of wind and string instruments (20-100ms) allow for imperfectly aligned onsets

to still be perceptually synchronized. Since the theremin also has a relatively indistinct, long rise time,

we believe that this is an acceptable result.
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Figure 9: Beat tracking experiment results

B. Utility of audio-visual beat fusion module

In the final experiment, we verified the tempo estimation given by our audio-visual beat tracking system.

We asked the two participants from Experiment 1 to play 8 notes with a ritardando, as shown in Figure

7(d). They were asked to perform this a total of ten times, using a gesture to keep in synchrony with

their co-player. The first five times, this co-player was a real person, the Follower. This condition was

used to give the flutist the context of a natural situation; it was essentially a “warm-up”. The latter

five times, we asked the flutist to imagine a co-player, but in reality play their notes alone. We used the

latter condition to give us a total of 10 instances, 80 gestured notes, or 70 inter-onset-interval tempo

indications. The rationale here was to ensure the algorithm was not be affected by the Follower’s notes.

The result of the audio-visual tempo detection is shown in Figure 9. We can notice that beat fusion

was better for precision, and worse for recall. In other words, our use of two sources of data prevented

unwanted changes in tempo which could be disturbing for a musical performance. In summary, the

system misses more tempo change signals than our vision-only approach, for example, but is robust

to extraneous movements. This is likely preferable and somewhat similar to a human co-players’ true

behavior.

An unexpected outcome of this experiment came from the with-partner and alone conditions. Al-

though the system could detect the cues in both conditions, a few times Participant A asked to stop

and retry during the alone condition, citing she had made a mistake. We suggest that this was be-

cause of the visual feedback given by the Follower. Indeed, the physical synchronization of both players

seemed to add to the ease of performing the movement. This is consistent with the “muscular bonding”

phenomenon cited in the Introduction; synchronization of not only sound, but movement could be key.

This implies that the robot should give some synchronized visual feedback, perhaps by head nodding.

4 DISCUSSION AND FUTURE WORK

Here, we summarize and discuss the results of this study.
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4.1 Effectiveness of visual start and end cues

Visual cues are especially effective when no audio information is available. In this work, we made use

of the movement that conductors make when showing musical beats; an up-and-down motion. This

movement is also a natural way to express beats for most flutists, and we have shown that they are used

for start and end cues too. If musical performers use similar gestures when they play other instruments,

our method can be applied to a wide range of instruments.

4.2 Effectiveness of visual beat cues

Beat cues are provided in the middle of the ensemble performance. While these cues are considered to be

good information when starting a new passage with a different tempo, it is yet to be confirmed whether

these cues are appropriate when the human provides subtle tempo changes during his/her performance.

Our future work includes the verification how the behavior of the robot is improved with employing an

improved beat tracking method or a score following module.

4.3 Adaptation to tempo fluctuation

Because adaptation to tempo fluctuation is an inevitable issue to realize a human-robot ensemble, a

robust beat tracking or score following method is necessary. We are currently seeking a score-following

method based on a particle filter [47] [48]. The score following method produces better results compared

to beat tracking methods. We are currently working to apply our visual detection modules to the score

following method for a more robust co-player robot system.

Nevertheless, the score following method still suffers from the cumulative error problem; the error

in the audio-to-score alignment accumulates due to tempo fluctuation. To cope with these cumulative

errors, we need an error recovery mechanism at a higher level; e.g., the robot would jump to a certain

passage when the robot detects a salient melody before the passage.

One of the drawbacks in our method is that the tempo detection accuracy depends on how skilled

the flute player is. By using a larger matching threshold, we can suppress the false detection of beat

cues. We need further experiments to determine the proper threshold.

4.4 Perspective on information fusion

Aggregation of visual and audio information is categorized into three methods:

1. Visual information is used to filter audio information. We have presented this type of

information aggregation: among the detected audio onsets, some audio onsets irrelevant to the

visual cue are filtered out so as to stabilize the tempo estimation accuracy.

2. Audio is used to filter visual information. Shiratori et al. uses the audio to segment dancing

motions in a video [49]: Among the detected pose candidates for the dancing segmentation, audio

beats are used to filter out false-detected poses.
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3. Both audio and vision are used equivalently. Itohara et al.’s beat tracking method [48]

uses the trajectory of guitar-playing arm motion and the audio beats in the guitar performance.

These two information sources are integrated by a particle filter to obtain the improved tempo

estimation and beat detection.

In addition, our current framework is only useful for slow and sparsely notated musical pieces when

setting a large window to filter the audio beats. This may be useful for these cases, since it has been

shown that synchronization is most difficult for slow pieces [46]. On the other hand, skilled musicians

tend to play fast passages without any unnecessary motions [27]. We need a mechanism to robustly

estimate the tempo when a fast and densely notated phrase is given as an input with little visual

information like gestures.

Other remaining issues include the fact that the robot is only following the human leader. For

true interaction, the human should also react to the robot’s actions. Additionally, the robot should

have its own their internal timing controller; for instance, Mizumoto et al. [50] employs an oscillator

model to synchronize not only the tempo, but the phase of beat onsets. Other future directions include

experiments with an augmented number of subjects, the use of robot-embedded microphones, and

extension of the system to other instruments.

5 CONCLUSION

Our ultimate goal is to create a robot that can play music with human-like expressiveness and syn-

chronicity, for better human-robot symbiosis. In this paper, we have developed a singing, theremin-

playing robot that can synchronize in timing and speed with a co-player. Our novel contribution is the

addition of visual cues for beat-tracking; we show that the system can estimate a flutist’s tempo quickly,

and with better robustness than with audio alone. We have also validated our hypothesized flute ges-

ture trajectories with a small-scale experiment, suggesting that the robot can detect naturally-occurring

cues.
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